Multilevel Models

Yongdai Kim

Seoul National University, Korea

0. Outline

- 1. Introduction
- 2. Multilevel analysis with Linear model
- 3. Multilevel analysis with Generalized linear model
- 4. Multilevel linear model vs multilevel GLM

1. Introduction

- What are "Multilevel Models"?
 - Multilevel models are statistical models for data displaying hierarchical structures.
 - Example of hierarchical structures
 - * Nation \rightarrow Region \rightarrow County
 - * Village \rightarrow Household \rightarrow Individual
 - * Level $3 \rightarrow$ Level $2 \rightarrow$ Level 1

Seoul National University.

1

Example 1: Testis cancer mortality in the European country

- The data set consists of testis cancer mortality for males of all ages between 1971 and 1980 in 9 European countries.
- There are three levels
 - Level 1: county
 - Level 2: Region
 - Level 3: Country
- The objective of the study is to investigate the distribution of testis cancer mortality in relation to income and urban-rural status.

Example 2: Sleep pattern vs Cough (Repeated measures)

- Response variable: the percentage of the night spent awake.
- Explanatory variable: the total number of cough recorded during the night.
- 39 children were assessed on a number of nights varying from four to six.
- There are two levels:
 - Level 1: each night
 - Level 2: children

Seoul National University.

3

Example 3: UNICEF water sanitation intervention study (Cluster randomization)

- There are three levels:
 - Level 1: the number of diarrhea on every 2 months
 - Level 2: Children
 - Level 3: Village

Strengths of Multilevel Models

- Explicitly account for the interdependence of clustered units (where clustering may be spatial or temporal).
- Allow for the modeling of both average (fixed) effects and individual (random) effects.
- Facilitate thinking about and modeling context x person interactions.
- Permit inferences to be drawn to broader populations

Seoul National University.

5

Aim of the talk

- The aim of this talk is to review statistical models and inferential methods for multilevel data.
- First, statistical methodologies based on the linear models (i.e. continuous data) are reviewed,
- and methods based on generalized linear models (i.e binary or count data) are discussed.
- In particular, differences and difficulties of multilevel models based on the GLM compared to linear multilevel models are explained.

2. Multilevel analysis with linear models

- Consider the Sleep pattern vs Cough (SPC) data set (Level 1 night, Level 2 children).
- Let n be the number of clusters in Level 2 (i.e n = 39) and let n_i be the number of observations from the ith cluster in Level 2.
- X_{ij} : covariate from the jth observation in the ith cluster.
 - For SPC data, X_{ij} is the number of coughs at each night (Level 1 covariate).
 - We can use Level 2 covariates such as gender, age etc.
- Y_{ij} : response variable from the jth observation in the ith cluster.
 - One important feature of the multilevel model is that response variables from the same cluster are correlated.

Seoul National University.

7

Variance component model

- Model
 - (a) $Y_{ij} = \beta_{0i} + \beta_1 X_{ij} + e_{ij}$
 - (b) $\beta_{0i} = \beta_0 + u_{0i}$
 - (c) $e_{ij} \sim N(0, \sigma^2), u_{0i} \sim N(0, \tau_{00}), Cov(e_{ij}, u_{0i}) = 0.$
- The effect of X to Y is (measured by β_1) equals for all clusters.
- The overall mean level of Y (after adjusting X) is β_0 .
- But, the mean levels of Y (measured by β_{0i}) of clusters vary.
- The variance of β_{0i} , τ_{00} represents the degree of heterogeneity of clusters. Larger the variance is, more the mean levels of Y differ across the clusters.

• Observations in the same cluster are correlated, and the correlation, called "Intracluster correlation coefficient" is always positive:

$$\rho = \frac{\tau_{00}}{\sigma^2 + \tau_{00}}.$$

- Note that $Var(Y_{ij}|X_{ij}) = \sigma^2 + \tau_{00}$. That is, the variance of data is decomposed to the two variance components Level 1 variance component σ^2 and Level 2 variance component τ_{00} .
- Since u_{0i} are treated as random variables (random effect), the model is called a *mixed effect model* (mixture of the fixed effect β_1 and random effect).
- u_{0i} can be treated as fixed effects (eg. randomized block design).

Seoul National University.

9

- Advantages of Random effect over Fixed effects
 - Small number of parameters and so more efficient.
 - The results can be extended populationwidely.
 - Easy to incorporate complicated hierarchical structures.
 - Asymptotically valid.
- Disadvantage of Random effect over Fixed effects
 - Results may not be valid when the distribution of random effects is misspecified.
 - Computation are demanding for complicated hierarchial structures.

Random coefficient model

- The effects of X to Y vary across the clusters.
- Model

(a)
$$Y_{ij} = \beta_{0i} + \beta_{1i}X_{ij} + e_{ij}$$

(b)
$$\beta_{0i} = \beta_0 + u_{0i}$$

(c)
$$\beta_{1i} = \beta_1 + u_{1i}$$

(d)
$$e_{ij} \sim N(0, \sigma^2), e_{ij} \perp (u_{0i}, u_{1i})$$
 and

$$\left(\begin{array}{c} u_{0i} \\ u_{1i} \end{array}\right) \sim N \left(\begin{array}{c} \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \quad \left(\begin{array}{cc} \tau_{00} & \tau_{01} \\ \tau_{01} & \tau_{11} \end{array}\right) \right)$$

Seoul National University.

11

Estimation method

- Marginally, the model is still linear, but the errors are correlated.
- So, we can use general least square method for the fixed effects, which turns out to be the MLE.
- For variance components, several methods such as ML, REML and MINVQUE are available (in SAS Proc Mixed).
- Estimation of the fixed effects are valid asymptotically even when the underlying distribution is not normal as long as the correlation structure is correctly specified.
- However, the estimation of the variance components may not be valid. MINVQUE is robust for distribution assumption since it is a method of moment estimator.

Prediction of random effects

- Empirical Bayes approach
- First calculate

$E(\beta_{0i}|\mathbf{Data}, \mathbf{fixed} \mathbf{\ effects} \mathbf{\ and \ variance \ components})$

- And replace the fixed effect and variance component by their estimators.
- It turns out that β_{0i}^* , the predicted values of β_{0i} is a convex combination of overall mean and cluster specific mean (i.e $\lambda \bar{Y}_{..} + (1-\lambda)\bar{Y}_{i}$. for some $\lambda \in [0,1]$ when no covariate exists).
- This prediction is called a shrinkage estimator (from the fixed effect model point of view).
- It is well known that shrinkage estimators outperforms MLE, which is an advantage of using random effects.

Seoul National University.

13

Illustration with the SPC data

• Result of variance component model without covariate

Parameter	Estimate	SE
eta_0	0.824	0.048
$ au_{00}$	0.068	0.020
σ^2	0.112	0.012

• Individual level variation of wakefulness exists.

• Result of variance component model with covariate

Parameter	Estimate	\mathbf{SE}
eta_0	0.671	0.059
eta_0	0.138	0.034
$ au_{00}$	0.061	0.018
σ^2	0.105	0.011

- Cough is a significant risk factor for wakefulness.
- Still individual variation of wakefulness exists even after adjusting cough.

Seoul National University.

15

• Result of a random coefficient model

Parameter	Estimate	\mathbf{SE}
eta_0	0.671	0.059
eta_0	0.138	0.034
$ au_{00}$	0.061	0.018
$ au_{11}$	0.026	0.016
$ au_{01}$	-0.027	0.020
σ^2	0.105	0.011

• τ_{11} is not significant. There appears to be not much evidence that coughing of a given amount bothers some children more than others.

• Prediction of random slope

Figure 1.1 Regressions of logawake on logcough for 39 subjects.

• There appears to be two subjects with negative slopes who might be investigated further.

Seoul National University.

17

3. Multilevel analysis with GLM

- Multilevel model with other than normal distribution such as binary, count, survival time etc, can be done inside the framework of the GLM.
- We consider the two most popularly used such models logistic regression model for binary data and Poisson regression for count data.

Multilevel logistic regression model

- We only present a random coefficient model.
- Model

(a) logit
$$Pr(Y_{ij} = 1|X_{ij}) = \beta_{0i} + \beta_{1i}X_{ij}$$

(b)
$$\beta_{0i} = \beta_0 + u_{0i}$$

(c)
$$\beta_{1i} = \beta_1 + u_{1i}$$

(d)

$$\left(egin{array}{c} u_{0i} \\ u_{1i} \end{array}
ight) \sim N \left(\left(egin{array}{c} 0 \\ 0 \end{array}
ight), \quad \left(egin{array}{c} au_{00} & au_{01} \\ au_{01} & au_{11} \end{array}
ight)
ight)$$

Seoul National University.

19

Multilevel Poisson regression model

- Model
 - (a) $Y_{ij} \sim Poisson(\mu_{ij})$
 - (b) $\log \mu_{ij} = \beta_{0i} + \beta_{1i} X_{ij} + e_{ij}$
 - (c) $\beta_{0i} = \beta_0 + u_{0i}$
 - (d) $\beta_{1i} = \beta_1 + u_{1i}$
 - (e) $e_{ij} \sim N(0, \sigma^2), e_{ij} \perp (u_{0i}, u_{1i})$ and

$$\left(\begin{array}{c} u_{0i} \\ u_{1i} \end{array}\right) \sim N \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \quad \left(\begin{array}{cc} \tau_{00} & \tau_{01} \\ \tau_{01} & \tau_{11} \end{array}\right) \right)$$

(*) e_{ij} term is needed for overdispersed models.

Seoul National University.

Illustration for the Multilevel Poisson regression model

- Testis cancer mortality in the European country
- Three levels: Country, regions and county
- 9 nations, 78 regions and 354 counties
- Two covariates (county level)
 - $-X_1$: GDP per inhabitant
 - $-X_2$: density of inhabitants per square kilometre.
- Response: the number of deaths due to testis cancer in between 1971 and 1980.
- Model: Multilevel Poisson regression model with overdispersion.

Seoul National University.

21

• Variance component model

Table 1: Estimation result with the PQL method

Parameter	Estimate	\mathbf{SE}
Fixed part	-	
$oldsymbol{eta_0}$	2.58	0.11
$oldsymbol{eta_1}$	3.61	1.42
$\boldsymbol{\beta_2}$	-7.22	4.71
Random part		
Level 3: nations		
$ au_{00}^{(3)}$	0.096	0.052
Level 2: regions		
$ au_{00}^{(2)}$	0.028	0.008
Level 1: counties		
σ^2	1.48	0.12

• Remarks

- GDP is a significant risk factor.
- Data is overdispersed since σ^2 is large.
- There are significant regional variations in testis cancer mortality.
- However, countrywide variation is not significant.

Seoul National University.

23

• Prediction of regional random effects

Figure 4.1 Residuals and 95% confidence intervals for the 78 regions.

• Prediction of country random effects

Figure 4.2 Residuals and 95% confidence intervals for the 9 countries.

 $Seoul\ National\ University.$

25

- A (country level) random coefficient model only for GDP
 - Model
 - (a) $Y_{ij} \sim Poisson(\mu_{ij})$
 - (b) $\log \mu_{ij} = \beta_{0i} + \beta_{1i} X_{1ij} + \beta_2 X_{2ij} + e_{ij}$
 - (c) $\beta_{0i} = \beta_0 + u_{0i}$
 - (d) $\beta_{1i} = \beta_1 + u_{1i}$
 - (e) $e_{ij} \sim N(0, \sigma^2), e_{ij} \perp (u_{0i}, u_{1i})$ and

$$\left(\begin{array}{c} u_{0i} \\ u_{1i} \end{array}\right) \sim N \left(\begin{array}{c} \left(\begin{array}{c} 0 \\ 0 \end{array}\right), \quad \left(\begin{array}{cc} \tau_{00} & \tau_{01} \\ \tau_{01} & \tau_{11} \end{array}\right) \right)$$

(*) e_{ij} term is needed for overdispersed models.

\bullet Results with PQL

Table 2: Estimation result with the PQL method

Parameter	Estimate	SE
Fixed part		
$oldsymbol{eta_0}$	2.56	0.12
$oldsymbol{eta_1}$	2.65	1.91
$\boldsymbol{\beta_2}$	-4.74	4.92
Random part		
Level 3: nations		
$ au_{00}^{(3)}$	0.104	0.057
$ au_{11}^{(3)}$	8.40	10.89
$ au_{01}^{(ilde{3})}$	-1.10	5.82
Level 2: regions $_{-}(2)$	0.028	0.008
⁷ 00	0.028	0.008
Level 1: counties σ^2	1.48	0.12

Seoul National University.

27

\bullet Prediction of country level random coefficient

Figure 4.3 Relationship between GDP (centred) and mortality.

4. Multilevel linear model vs Multilevel GLM

- Multilevel GLM looks similar to multilevel linear models. However, there are various differences and difficulties in multilevel GLM such as
 - Interpretation of the fixed effects
 - Inferential methods
 - Choice of random effect distribution.
- We discuss differences and difficulties of multilevel linear model and multilevel GLM.

Seoul National University.

29

Interpretation of the fixed effect

- Consider the variance component model.
- For linear model, β_0 is the population mean of response.
- For logistic model, β_0 is not (the logit of) the population mean of Y (i.e probability).
- This is because multilevel linear models are marginally linear models while multilevel logistic models are not logistic models marginally.
- An alternative logistic model with correlated data is marginal models such as GEE. Marginal models, however, do not provide cluster level information.
- Currently, many researches for combining random effect models (subject specific model) and marginal models (population average model) have been done.

Inferential methods

- In general, the best method is to use the marginal likelihood (likelihood after integrating out random effects).
- For linear multilevel models, the marginal likelihood has closed forms and so no problem of getting MLE.
- For multilevel GLM, unfortunately, the closed form of the marginal likelihood is not available and so numerical integrations are required.
- For complicated multilevel models, there are high dimensional random effects and high dimensional numerical integrations are practically impossible.

Seoul National University.

31

• Alternative methods

- Approximated marginal likelihood: PQL
- Maximizing random effects as well as fixed effects: Hierarchical likelihood approach
- Bayesian approach with MCMC

• Remarks

- PQL and H-likelihood may be asymptotically inconsistent.
- Bayesian approach may be still computationally demanding and may be inferior for small sample sizes.

• Software

- Marginal likelihood: PROC NLMIXED (in SAS)
- PQL: PROC GLIMMIX (SAS Macro)
- Bayesian: WinBugs

Choice of random effect distribution

- So far, we assume that random effects are normally distributed.
- In some cases, other than normal distributions are required (eg. bimodal, skewed etc).
- For multilevel linear model, the estimators of the fixed effects are asymptotically valid even when the distribution of random effects is not normal.
- However, for multilevel GLM, misspecified random effect distributions result in biased fixed effect estimators.
- Two approaches
 - Goodness of fit for the random effect distribution
 - Nonparametric method: Mixture models.
- No practically usable software is not available yet.

Seoul National University.

33

5. References

- Leyland, A.H. and Goldstein, H. (2001). Multilevel modeling of health statistics. Wiley.
- Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized latent variable modeling. Chapman and Hall.