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Abstract 
Using theoretical analysis based on Landau theory, it 
is shown that only five phenomenological parameters 
are necessary to describe the twelve bulk elastic 
constants of a biaxial nematic phase. Further, a 
simple method for determining the values of these five 
parameters experimentally is given. Comparison with 
the values of the well-known splay, twist, and bend 
elastic constants of the uniaial nematic is made.  

1. Introduction 
Recent reports [1-3] of the observation of a biaxial 
nematic phase in thermotropic liquid crystals have 
renewed interest in the properties and possible 
applications of this novel liquid crystal phase.  The 
systems studied in these reports incude two classes of 
molecules: certain bent core (commonly called banana 
shaped) molecules [1,2] and some branched 
molecules described as tetrapods [3]. Analagous to the 
case for unixial nematic systems, the key for 
applications is to demonstrate the ability to align both 
axes of the biaxial phase by means of surfaces and 
fields, and to elastically switch or re-orient them.  
Therefore the elastic properties of biaxial phases are 
of central importance and they are the subject of the 
research presented in this paper. 
The basic theory of elasticity of the biaxial nematic 
phase was worked out by several independent 
research groups back in the early 1980’s.  They each 
found that the phase has twelve different bulk elastic 
constants, and three so-called surface elastic 
constants. In this work, we will ignore the surface 
constants and focus only on the bulk constants.  
Further, we will adopt the notation used by Saupe [4] 
to label and define them.  In the next section, the 
twelve bulk elastic constants will be discussed, and 
the distortions of the liquid crystal that are associated 
with them are shown.  Section 3 presents the Landau 
theory that will be used to make predictions for the 
values and temperature dependence of the elastic 
constants and shows how measurements on a uniaxial 
nematic phase can determine all the adjustable 
parameters.  Finally the last section examines how the 

elastic constants depend on the biaxial order 
parameter and reduce to the well-known splay, twist, 
and bend elastic constants of the uniaxial nematic in 
the limit the biaxial order goes to zero. 

2. Bulk Elastic Constants  
Using the treatment given by Saupe [4], the local 
elastic behavior of a biaxial nematic is described by 
means of terms quadratic in the spatial derivatives of 
a tripod of orthogonal unit vectors a, b, and c.  
Applying symmetry considerations, he showed that 
the bulk elastic free energy density consists of twelve 
terms.  Six of them are of the form  
 
(1) Kab ([(a•grad)a]•b)2   
 
where the first subscript on the K corresponds to the 
first two unit vectors in the expression, and the second 
subscript refers to the final unit vector.  The six 
constants are then Kab, Kac, Kba, Kbc, Kca, and Kcb.  The 
orientation of a, b, and c that will contribute only to 
the Kab term is easily visualized.  An example is to use 
cylindrical coordinates and have a bending to follow 
the θ direction, b splaying to be along r, and c being 
uniform along z, as illustrated in Fig. 1. 
 

 
 
 
 

b 

a

Figure 1.  A distortion involving Kab is shown.
There is a bend of a and a splay of b. 
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Another three terms in the elastic free energy density 
are of the form: 
 
(2) Kaa ([(a•grad)b]•c)2  . 
 
This term is non-zero for a distortion in which b and c 
rotate about the a axis and the rotation angle is 
proportional to the translation distance along the axis, 
i.e. a twist about the a axis.  A cyclic permutation of 
a, b, and c gives the three terms Kaa, Kbb and Kcc. 
The last three terms in the elastic free energy density 
are coupling terms, and they have the form: 
 
(3) 2Cab ([a•grad]a)•([b•grad]b)  . 
 
As with the other terms, cyclic permutation of the unit 
vectors and C subscripts leads to the three constants 
Cab, Cac, and Cbc. Unfortunately no simple distortion 
exists for which only one C term is non-zero.  
However, a configuration in which the a-b-c tripod is 
aligned with the tripod of unit vectors of the spherical 
coordinate system will have one non-zero C term. 
All twelve bulk elastic constants have now been 
discussed. 
 

3. Landau Theory 
A standard method of estimating values of the elastic 
constants of both uniaxial and biaxial nematic phases 
is the phenomenological Landau theory.  It is based 
on an expansion of the free energy density in terms of 
scalar invariants of powers of a traceless second rank 
tensor, Qαβ, and its spatial derivatives ∂αQβγ.  The 
local principal axes of the tensor are the a-b-c tripod 
of unit vectors, and the eigenvalues of the tensor are 
determined by the anisotropic values of any chosen 
tensor property, such as the magnetic susceptibility or 
the indices of refraction.  For example, suppose a 
biaxial nematic has three indices of refraction n1 > n2 
> n3 and their average value is n. If n2 < n , we may 
take Qcc = n1 –(n2 + n3)/2 and Qaa–Qbb = n2-n3.  (If n2 > 
n, interchange n1 and n3 in these expressions.)  Qcc is 
the uniaxial order parameter and will be called S in 
the rest of this work, while n2-n3 is the biaxial order 
parameter, which will be called P.  Referenced to a  
Cartesian coordinate system, Qαβ may be taken to be 
 

(4)   Q αβ=  S(3cαcβ - δαβ)/2 + P(aαaβ - bαbβ)/2   . 
 
Monselesan and Trebin [5] showed that the terms in 
the Landau expansion that are relevant for 
determining the elastic constants are the invariants of 
the form (∂Q)(∂Q), Q(∂Q)(∂Q), and QQ(∂Q)(∂Q).  
There are three invariants of the first type, six of the 
second type and thirteen of the third type.  
Unfortunately each invariant introduces a 
phenomenological coefficient, so the theory contains 
22 adjustable coefficients, which is far too many to be 
of much practical use.  The need for the three types of 
terms is due to the fact that if only the first type is 
kept, one finds the bend and splay uniaxial elastic 
constants to be identical (which contradicts 
experiment), but the expansion is unstable against 
large deformations if only the second type of term is 
included but not the third type. 
 
The approach that is taken in this work to overcome  
the dilemma noted above is to reformulate the 
problem by not treating the eigenvalues of Q as 
spatial variables. They are instead assumed to be 
given functions of temperature.  This approach is 
clearly an approximation that is not always valid 
because it is known from wetting and defect studies 
that the eigenvalues do change with position in 
regions near surfaces and in the cores of defects.  
However these effects seem to always be limited to 
very small length scales. Therefore they will be 
neglected.  When S and P are not functions of 
position, the expansion is stable if only the first two 
types of terms are kept.  Thus we may discard all 
thirteen terms of the form QQ(∂Q)(∂Q). 
The final simplification that has been made is to 
neglect the surface elastic terms, as was mentioned 
previously. This simplification is not necessary, but is 
made because it is convenient and because in most 
situations the surface terms are unimportant.  If they 
are kept, an additional two terms appear in the free 
energy density given below. 
Under these assumptions, the free energy density 
reduces to only five terms. 
(5)  2F = L1(∂αQβγ)(∂∝Qβγ) + L2(∂αQαβ)(∂γQγβ) 
       + L4Qαβ(∂αQµν)(∂βQµν) + L5Qαβ(∂µQµα)(∂νQνβ) 
       + L6Qαβ(∂µQνα)(∂µQνβ). 
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Specifically, (∂αQβγ)(∂βQαγ) differs from the term 
multiplying L2 by only a surface term, and 
Qαβ(∂µQνα)(∂vQµβ) differs from the term multiplying 
L6 by only a surface term.  Furthermore, 
Qαβ(∂αQβµ)(∂νQνµ) = {Qαβ(∂αQµν)(∂βQµν) – 
2 Qαβ(∂µQµα)(∂νQνβ) + 2 Qαβ(∂µQνα)(∂µQνβ) }/4 and 
Qαβ(∂αQµν)(∂µQνβ) =  {Qαβ(∂αQµν)(∂βQµν) + 
2 Qαβ(∂µQνα)(∂µQνβ) – 2 Qαβ(∂µQνα)(∂vQµβ) }/4. 
This accounts for all six of the terms of the form 
Q(∂Q)(∂Q) and all three of the form (∂Q)(∂Q). For the 
familiar uniaxial nematic phase, this expression for F 
and Eq. (4) yields the following expressions for the 
splay, bend and twist elastic constants. 
K1 = (3S/2)2(2L1+L2)+(3S/2)3(-2L4+2L5+L6)/3 , 
K2 = (3S/2)2(2L1)+(3S/2)3(-2L4+L6)/3 , and 
K3 = (3S/2)2(2L1+L2)+(3S/2)3(4L4-L5+L6)/3 . 
Dividing these expressions by S2 , one expects 
Kj/S2 to be linearly dependent on S with a non-zero 
intercept. As pointed out in the work of Berreman and 
Meiboom [6], experimental data on the splay, twist, 
and bend constants can be fit to the form Kj/S2 = bj 
+mjS for j = 1,2,3 to obtain values for the five 
parameters b1=b3, b2, m1, m2, and m3. For the 
materials analyzed in ref.[6], m1 and m2 were negative 
but m3 was positive.  The five L’s are then given by 
L1=2b2/9, L2=4(b1-b2)/9, L4=2(m1-3m2+2m3)/27, 
L5=4(m1-m2)/9, and L6=4(m1+3m2+2m3)/27. 
Thus all five phenomenological parameters can in 
principle be determined from data on the uniaxial 
elastic constants, i.e. the b’s and m’s.   

4. Results for Biaxial Elastic Constants 
In this section, the results of the Landau theory for 
estimating all twelve bulk biaxial phase elastic 
constants are given.  It is useful to simplify the 
expressions by making the following notational 
definitions:  x = 3S/2, y = P/3S, D1 = 2L1+L2, and D2 
= 2L1.  The variable y represents the biaxial order 
parameter P. 
 
 
Kaa = x2D2(1+y)2  + x3(-2L4+L6)(1+y)2(1-3y)/3 
 
Kbb = x2D2(1-y)2 + x3(-2L4+L6)(1-y)2(1+3y)/3 
 

Kcc = x2D2(4y2) - x3(-2L4+L6)(8y2)/3 
 
Kab = x2D1(4y2) -  x3[2L4(1-3y)+L5(1+3y)+2L6](4y2)/3 
 
Kac = x2D1(1-y)2 - x3[2L4(1-3y)-2L5-L6(1+3y)](1-y)2/3 
 
Kba = x2D1(4y2) - x3[2L4(1+3y)+L5(1-3y)+2L6](4y2)/3 
 
Kbc = x2D1(1+y)2 -x3[2L4(1+3y)-2L5-L6(1-3y)](1+y)2/3 
 
Kca = x2D1(1-y)2 + x3[4L4-L5(1-3y)+L6(1+3y)](1-y)2/3 
 
Kcb = x2D1(1+y)2 +x3[4L4-L5(1+3y)+L6(1-3y)](1+y)2/3 
 
Cab = x2L2(1-y2) + x3[2L5] (1-y2)/3 
 
Cac = x2L2[2y(1+y)]  - x3[2L5][y(1+y)(1+3y)] /3 
 
Cbc = -x2L2[2y(1-y)]  + x3[2L5][y(1-y)(1-3y)] /3 
 
At a second order transition between uniaxial and 
biaxial nematic phases, y goes to zero, so taking the 
limit y goes to zero in the preceding equations, one 
finds the values of the constants at the transition. 
The values are Kaa = Kbb = K2, Kac =  Kbc = K1, Kca = 
Kcb = K3, Cab = K1 – K2 , and the other five constants 
are zero. As temperature is reduced and y(P) 
increases, the degeneracy is destroyed and each 
constant has a distinct value.  
 

5.        Conclusions 
Motivated by the recent experimental observations of 
thermotropic biaxial nematic phases, this work has 
analyzed their elastic properties.  The important new 
result presented here is the demonstration of a 
practical method to characterize all twelve bulk elastic 
constants in terms of only five adjustable parameters, 
and to indicate how these parameters can be 
experimentally determined.   
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