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1. Introduction

    The advent of DNA microarrays makes possible to provide thousands of gene 

expression at once (Duggan, 1999; Schena et al., 1995) but the main difficulty with 

microarray data analysis is that the sample size is so small compared to the dimension 

of the problem (the number of genes). The number of genes for a single individual is 

usually in the thousands and there are few individuals in the data set. Models for such 

data be complicated, and computational methods are generally intensive. In this paper we 

are considering a situation when survival times of (for example) cancer patients are of 

interest. In this setting, it is of interest to identify the significant genes which are 

controlling the survival time of the patients. Also we want to estimate the patient 

survival probabilities after controlling for other covariates such as levels of clinical risk. 

    In this paper, we suggest a gene selection technique using a Bayesian model based 

variable selection approach for survival data. Typical Bayesian variable selection 

methods are based on the assumptions of Gaussian distributions for the likelihood and 

use of mixture priors to obtain marginal distributions (George and McCulloch, 1993). We 

extend these models to the data context where the responses are time to event. We 

address the issue of how to select the significant genes as well as assess the survival 

curves using the Cox proportional hazards model where the sample size  is much more 

smaller than the number of variables (genes) . 

    We generalize the Gaussian mixture prior approach in this non-Gaussian framework. 

For non-Gaussian data it is well known that conjugate priors do not exist for the 

regression coefficients. The computations are then potentially much harder particularly 

when sampling the dimension of the model. This is due to possibly strong posterior 

correlation between the elements of regression parameters such that adding or removing 

a variable can result in a large drop in the model likelihood unless careful update 

proposals are made to the coefficients to accommodate the change. Hence, without 

tailored updates to regression parameter mixing in the MCMC sampler can be poor as 

moves are rarely accepted. The construction of good proposals is not trivial and depends 

on both the form of the model as well as on the data.
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    In this paper we exploit the use of a random residual component within the model. 

The use of a residual component is consistent with the belief that there may be 

unexplained sources of variation in the data perhaps due to explanatory variables that 

were not recorded in the original study. By adopting a Gaussian residual effect many of 

the conditional distributions for the model parameters will be of standard form which 

greatly aids in the computations.

    We consider one cDNA data set, B-cell lymphoma data set (Alizadeh et al., 2000) 

and identify a set of responsible genes which explain the survival time.

2. Variable Selection Model 

    Let   be the survival time (observed or censored) for the th patient and 's are 

the     covariates associated with it. Usually   indicates the binary or multi- 

category phenotype covariate and other 's are   gene expressions from DNA 

microarray data, which is continuous in nature.

    The Cox proportional hazards model (Cox, 1972) assumes that the hazard function 

consists of two parts: baseline hazard function and non-negative function of covariates 

 . It is given by          where     is the baseline hazard function,  

  and   is a     × vector of regression coefficients. Due to indetermination 

of baseline hazard function, the proportional hazards (PH) model has adequately 

adaptable for many applications (Kalbfleisch and Prentice, 2002).

    Kalbfleisch (1978) suggested the nonparametric Bayesian method for the PH model. 

We apply Bayesian variable selection approach to this model. We overcame the 

computation difficulties by including a random residual component as

        ∼
 

where   is the design matrix with th column  . This introduction of   enables to 

generate samples from full conditionals of all other parameters which is consistent with 

the belief that there may be unexplained source of variation in the data perhaps 

departure from the assumption of linearity. 

    Assume that   is an independent random variable with conditional survival function

≥              ⋯   

Kalbfleisch (1978) suggested Gamma process ( ) prior for the baseline cumulative 

hazard function   . The assumption is ∼    where   is the mean 

process and   is a weight parameter about the mean (Ibrahim et al., 2001). Kalbfleisch 

(1978) showed that if  ≈ , the likelihood is approximately proportional to the partial 

likelihood and if →∞, the limit of likelihood is same to the likelihood when the gamma 

process is replaced by . 

    Since  ∼       for given , the unconditional marginal survival function 

is obtained by direct integration and the joint survival function conditional on   is:
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≥ ⋯≥   








      

For the th data point  , the censoring indicator variable is  . For  observations 

  ⋯  , the corresponding censoring variables are   ⋯  , where 

 




    
      



Using a property of Gamma process, Kalbfleisch (1978) showed that the likelihood with 

some right censoring is 

    








    
 



   


where   
∊ 

     ⋯ ,    is the set of individuals at risk at 

time   ,             and         denotes the observed 

data.

    Now we can construct the Gaussian mixture prior for   to perform the variable 

selection procedure. Define   to be an arbitrary  ×   vector of indicator variables with 

th element   such that     if     (the gene is not selected) and     if  ≠

(the gene is selected). Given   let   consists of all non zero elements of   and let   

be the columns of   corresponding to those elements of   that are equal to one. To 

complete the hierarchical model we need to make the prior assumptions:

1. Given , the prior for   will be ∼     
 where   is a positive 

scale factor specified by the user. Smith and Kohn (1996) suggested to choose   

between 10 to 100 for linear model problems. We will fix     so that the 

prior of  , given , contains little information about  .

2. The   will be assumed to be a priori independent with       . The 

values of   will be chosen to be small which will restrict the number of genes in 

the model. For example if we have 3000 total number of genes and want to allow 

only 15 genes due to small sample size then will fix  ≡   to achieve the 

purpose. In addition, if we have prior knowledge that some genes are more 

important than others, we can incorporate this easily by assigning larger values of 

.

So the prior distributions for variable selection is as follows:

   ∼ 


  ∼ 
  



  ∼  

 ∼ 









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where MN is multivariate normal distribution and IG is inverse Gamma distribution. 

3 . Ex am ple

    We applied these methods for finding a set of responsible genes which explain the 

survival function to a Diffuse Large B-cell lymphoma (DLBCL) data set (Alizadeh et al., 

2000). Diffuse large B-cell lymphoma (DLBCL) is one of subtypes of non-Hodgkin's 

lymphoma. But still patients with this disease had diverse responses to current therapy. 

    So Alizadeh et al. (2000) proposed that there should be some different forms of 

DLBCL and discovered two distinct forms of DLBCL, activated B-like DLBCL and 

GC-B like,  using DNA microarray experiment and hierarchical clustering. They showed 

that these two subgroups of DLBCL were differentiated from each other by distinct 

gene expressions of hundreds of different genes and had different survival time patterns.

    There are 40 patients and expression level measurement for 4513 genes for each 

patient. We consider the fixed binary covariate   as     if th sample is Activated 

B-like and     if other case for   ⋯ . Also we have the expression level 

measurement for a set of genes, so   is the normalized log scale measurement of the 

expression level of th gene for the th sample, where   ⋯   and   ⋯   

    To develop the semiparametric model, we choose the baseline function   as 

Weibull distribution for the Gamma process, that is,     
We choose moderate 

value of the hyperparameter as   . The estimates of hyperparameters,   and , 

are obtained using estimates of intercept and scale in Survreg function (survReg 

(formula=Surv (y, censor) ∼1, dist="weibull") in S+. For our computational convenience, 

1000 genes are preselected by a two-sample t-test. We consider several frequent 

subsets from the MCMC chain and the top two-genes model comes out to be the best 

subset with respect to Bayes factor. 

    The survival function in the Cox proportional hazards model is 

     ≥   




    





and we exploited the posterior samples for this model to get the Monte Carlo estimate 

of the function. The posterior estimates of survival curves (solid line) with 5th and 95th 

survival estimates (dotted line) based on the top two genes are superimposed on the 

Kaplan-Meier (1958) estimates (dash-dotted line) of survival functions (Figure 1). These 

plots show that this model is a good fit to both of the subgroup of patients.

    Rather than a single, parsimonious model, the biologists may interested to bigger 

families of genes to study relationships and functions. We presented some selected 

genes based on the marginal frequencies in Table 1. Some of the identified genes are 

already known to be biologically significant. Since MAPK10 (mitogen-activated protein 

kinase 10) is connected to TNF (tumor necrosis factor)-a signaling pathway (Decraene  
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et al., 2002), its expression is directly related to tumor. Rimokh et al. (1993) showed 

that FVT1 ( follicular variant-translocation gene) is highly expressed in some T-cell 

malignancies. It would take part in the tumoral process. WASIP (Wiskott-Aldrich 

syndrome protein-interacting protein) is known to play a role in cortical actin assembly 

related to lymphocyte function by Ramesh et al. (1997).

    Heat maps have become popular in the microarray literature, Eisen et al. (1998), as 

graphical representations of the primary data where each point is associated with a color 

that reflects its value. Increasingly, positive values are represented with reds of 

increasing intensity and increasing negative values with greens of increasing intensity. 

A heatmap based on the top two genes in Figure 2 shows that these gene expression 

pattern is related to survival times and it is distinct between two groups. 

4 . Discussion

    We have proposed a Bayesian model for variable selection in the proportional hazard  

model with specific application to analyze Microarray data. We obtain a nice estimate of 

the survival curves with an extremely small number of genes. On the other hand, 

bigger families of genes can be useful to biologists to study the relationship and 

functions. Information on the size of models for prediction can be easily included in our 

Bayesian search of good models. The method has flexibility of allowing the location of 

larger sets of genes, via the inspection of the best visited models or the marginal 

probabilities of single genes, as we have illustrated.
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Figure 1. Survival Function for DLBCL Data 

Using Semiparametric Hazards Model 

Figure 2. Heat Map with Survival Time for DLBCL Data


