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1. Introduction

Although balanced factorial designs, characterized by Shah (1960) 

and Kshirsagar (1966), were developed mainly in the context of 

agricultural experiments, balanced designs have been found to be 

useful in other settings as well. For instance, balanced designs have 

also been studied extensively for bioassay experiments, see Gupta 

and Mukerjee (1996), Kshirsagar and Wang (1996), and the 

references cited therein. The purpose of this paper is to provide 

balanced factorial designs for cDNA microarray experiments. Since 

two experimental conditions are ybridized on each microarray slide, 

the arrays form blocks of size two. The blocks are incomplete if 

more than two conditions are under study. Using the ANOVA model, 

Kerr and Churchill (2001a,b), and Churchill (2002) provided a 

detailed discussion of several design issues involved in microarray 

experiments. They showed the inefficiency of the “common 

reference" design, the design that has been widely used for 

conducting microarray experiments. The authors introduced loop 

designs (or cyclic designs) for microarrays and showed that they 

offered considerable improvement over the "common reference" 

designs in terms of efficiency. However, loop designs become 

inefficient for larger number of treatment combinations. Kerr and 

Churchill (2001a) used the A-optimality criterion to construct 

designs. Glonek and Solomon (2003) stressed the importance of 

keeping the contrasts of interest in mind for constructing efficient 

designs. They argued that a design with high overall efficiency may 
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not be the most efficient design as far as estimation of the specific 

contrasts of interest is concerned. The authors considered 

admissible designs, and restricted their computer search of designs 

to the class of admissible designs.

  The reader is referred to, for example, Lee (2004) for background 

details on microarrays. The anatomy of confounding and estimation 

of factorial effects in single replicate block designs with block size 

two is first briefly discussed in the next section. Applications of 

classical confounded designs and generalized cyclic designs to 

factorial microarrays are presented in section 3. The ,  and 3 × 

2 experiments are discussed in detail. Microarray designs for other 

experiments can be obtained similarly. Finally, some concluding 

remarks are made in section 4.

2. Confounded and unconfounded designs with 

    block size two

Consider a factorial experiment involving  factors   ⋯   

at two levels each. Treatment combinations will be denoted by 

-tuples   ⋯  where =0 or 1 denote the two coded levels of 

the  th  factor,     ⋯ . Let   be a single replicate design 

having  blocks of size two for the -factor experiment obtained 

using the classical method of confounding, see e.g. Raghavarao 

(1971). Let the   factorial effects (main effects and/or 

interactions) confounded between the blocks of D be denoted by  , 
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    ⋯  , and let  ,     ⋯ 
  denote the 

factorial effects that are unconfounded, and hence estimable in  .

  Let    denote the two treatment combinations in the  th 

block of   , and let    be the observations corresponding to 

them,     ⋯  .  Then, the contrasts of block totals 

   ,     ⋯ 
 , estimate the block effects, the factorial 

effects  ,     ⋯ 
 , are confounded with. Whereas, the 

unconfounded factorial effects  ,     ⋯ 
 , are estimated 

using the within block comparisons   ,      ⋯  .  

Let

         ⋯    

where      denotes the number of blocks. Let 

  ⋯  be such that    ,   ⋯
 . 

Then, clearly ,   ⋯
 , form a complete set of mutually 

orthogonal column vectors of size  .  Also,     
 

where  denotes the constant variance of the difference   . In 

the case of a microarray experiment involving   arrays, the 

within block comparison     corresponds to the  expression 

ratio for the two treatment combinations hybridized on the th array.

  A partially confounded design in which all the   factorial 

effects are estimable may be obtained by adding further replicates 

that confound a different set of factorial effects. Although we have 

illustrated the method of confounding using  experiments, the 

method is applicable in general to factors with number of levels a 

prime or power of a prime number. In fact, similar conclusions also 
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hold for balanced factorial designs with block size two obtained 

using methods other than the classical method of confounding.

3. Factorial Microarrays

3.1  experiments

In a  experiment we have two factors  and  at two levels 

each. As before, the two levels of each factor are coded as 0 and 1. 

There are two more factors in addition to  and . These are the 

two nuisance factors: dye at two levels and array or slide at  

levels, where  denotes the total number of slides used in the 

experiment. Throughout, we will denote dye by factor  with its 

two levels coded as 0 (cy5:red) and 1 (cy3:green). The model for 

the data can be written as

               

where the within block comparison from the  th block,   , 

corresponds to the  expression ratio for the two treatment 

combinations  and  hybridized on the th array. The    is the 

dye effect,  is the effect of the th treatment combination, and  

are random errors independently distributed with mean zero and 

constant variance . The  expression ratios are assumed to 

have been subjected to normalization and background correction 

methods. Note that the block effects get eliminated from the within 

block comparisons   . The dye effect     will also get 
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automatically eliminated from estimates of the factor main effect 

and the interaction if the treatments are orthogonal to dyes, i.e. if 

the two levels of dye appear equally often with each treatment 

combination. Note also that the above model is applicable for each 

gene separately; thus the treatment effects, and dye effect are gene 

specific.

  The single replicate designs obtained using the method of 

confounding along with the effect confounded in each replicate are 

given below in Table 1.

Table 1 

Designs for   factorial

                

Design Blocks Effect confounded

 [00, 01], [10, 11] 
 [00, 10], [01, 11] 
 [00, 11], [01, 10] 

  

  A microarray design is a row-column design with  (dye) as the 

row factor and blocks (slides) as the column factor; the levels 0 

(red) and 1(green) of  correspond to the first and second rows 

respectively. Using   and  we get the following microarray 

design, where columns correspond to the four slides:

00 11 10 01

01 10 00 11

All the treatment combinations in the first row are labeled with cy5 

and those in the second row are labeled with cy3. For instance, the 

first column [00, 01] represents a slide hybridized with treatment 
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combinations 00 and 01, which are labeled with red and green dyes 

respectively. The treatment combinations in the columns are 

arranged such that rows are orthogonal to treatment combinations. 

The orthogonality of rows and treatments can be achieved only 

when the number of slides used is a multiple of the number of 

treatment combinations. The above microarray design estimates the 

main effects  and  with 50% efficiency, whereas, since the 

interaction  is unconfounded both in  and , it is estimated 

with full efficiency. This design is in fact the common loop (CL) 

design given by Kerr and Churchill (2001a). Taking two replications 

of   yields the following design, referred to as cross-swap (CS) 

design by Landgrebe et al. (2005):

00 01 11 10

11 10 00 01

Landgrebe et al. (2005) considered two designs in 16 slides; one 

design using four replications of CL and the other using two 

replications each of CL and CS. In fact, , ,  can be 

appropriately combined to obtain additional designs with desired 

efficiencies of estimation of ,  and .  For example, taking 3 

replications of  , 2 replications of  and 3 replication of   

yields the following microarray design in 16 slides:

00 10 01 11 00 10 10 01 00 11 01 11 00 01 11 10

01 11 00 10 01 11 00 11 10 01 10 00 11 10 00 01

  The design estimates ,  and  with efficiencies 62.5%, 75% 
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and 62.5% respectively. The choice of a design will depend upon the 

desired efficiency or precision of estimation of the contrasts of 

interest.
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