A Study on the IDL Compiler using the
Marshal Buffer Management

Dong Hyun Kim ~

* Dept. of Computer Information, Suncheon Cheongam College.

Abstract

The development of distributed application in the standardized CORBA(Common
Object Request Broker Architecture) environments reduces the developing time and
maintaining cost of the systems. Because of these advantages, the development of
application is being progressed in the several fields using the CORBA environments.

The programmers in the CORBA environments usually develop the application
programs using the CORBA IDL(Interface Definition Language). The IDL files are
compiled by IDL compiler and translated into the stubs and skeleton codes which are
mapped onto particular target language. The stubs produced by IDL compilers
processes the marshaling a data into message buffer. Before a stub can marshal a
data into its message buffer, the stub must ensure that the buffer has at least enough
free space to contain the encoded representation of the data. But, the stubs produced
by typical IDL compilers check the amount of free buffer space before every atomic
data is marshaled, and if necessary, expand the message buffer. These repeated tests
are wasteful and incidence of overheads, especially if the marshal buffer space must
be continually expanded. Thus, the performance of the application program may be
poor.

In this paper, we suggest the way that the stub code is maintain the enough free
space before marshaling the data into message buffer. This methods were analyzes
the overall storage requirements of every message that will be exchanged between
client and server. For these analysis, in the Front End of compiler has maintain the
information that the storage requirements and alignment constraints for data types.
Thus, stub code is optimized and the performance of application program is increased.

I. Introduction

An IDL compiler accepts the IDL files
represe-

nting the services that object of server
support to the clients and generates the
stub and skeleton code that is mapped
onto particular programming language.
The stub codes generat-—

ed by IDL compiler marshal data into
message buffer and the buffer must have
at least enough free space to contain the

encoded representation of the data. But,
the stubs produced by typical IDL
compilers check the amount of free buffer
space before every atomic data is
marshaled, and if necessary, expand the
message buffer. These repeated tests are
wasteful and incidence of
overheads.[1][[3][4](5](71[8]

In this paper, we propose and design the
mechanism to solve the above problem.
With this mechanism, stub code maintains
the enough free space before marshalling

843

P YR EAE 2005 £AZHGEAS A9A A1

the data into message buffer. Therefore
the performance of the stub code is
increased.

The second section of this paper is the
overview of the CORBA and an IDL
compiler and the third is specification to
implement optimized IDL compiler.

II. The CORBA and An IDL Compiler

2.1 CORBA
The CORBA
interopera-
bility between objects and transparency
of request and reply in the distributed
environment. In Fig 1., the client is the
program that requests the method in the
implementation object and wish to return
the result value. The implemen-

tation object is the program that
implements -the attributes and operations
of the object that clients require.

The principle of client and
implementation object is following. First,
the client sends the service request to
ORB. The ORB searches the
implementation object to process the
service request and direct it to
implementation object. The corresponding
implementation object serves the request
using the operation and returns the result
value through the ORB.

of OMG supports the

The CORBA consists of the followings.
@® ORB

The ORB sends the request to
implementation object and reply to client.
Generally, the ORB supports the
transparency of object location, object
implementation, object execution state,
and communication mechanism.

@® IDL (Interface Definition Language)

The interface of object specifies the
operation and types which is supported
by object. In the CORBA, the interface of

object is specified by IDL that is
independent of programming language.
The OMG IDL is not programming

language, but declarative language. Thus,
the implementation of object is
implemented by different language.

@ Client Stub and Skeleton

The client stub is the mechanism in
which the client invokes the static
request and send to object
implementation. The skeleton is the
mechanism that the static request is sent
to object implementation. The client stub
and skeleton is generated by IDL
compiler using the OMG IDL interface
definition.

@® Dynamic Invocation

The CORBA system supports the
generation of request through the
dynamic invocation interface using the
interface repository which stores interface
information during the run-time.[1](2]

[31[71[91(11]

Fig 1. structure of CORBA

2.2 IDL. Compiler

An IDL compiler is generally different
from general-purpose compiler that
generates the machine code. An IDL
compiler is software that reads the IDL
files representing the service that object
of server supports to the clients and
translates an IDL file into the stubs and
skeleton codes which are mapped onto
particular programming language.

Shown as Fig 2., an IDL compiler reads
the IDL file as input and generates the
client, object implementation, stub, and
skeleton code as output which are
mapped onto particular programming
language. Finally, the programs executed
in ORB were generated by particular
programming language compiler with stub
code, client program and skeleton code,

..844_

A Study on the IDL Compiler using the Marshal Buffer Management

and object implementation program.
Especially, each of the stub and skeleton
code can separately be gener-

ated with different programming language
in CORBA. Thus, the previously
implemented program is compatible with
program implement-
ed in other
language.[3][5](6]

programming

Fig 2. Role of IDL compiler

The Fig 3. shows the major component
of CORBA IDL.

s DefinS @ Naming context

Module <identifier>
{

<type declarations>:
<constant declarations>;
<exception declarations>:

representation type, character related with
interface of object. At this point of view,
the CORBA interface is collection of
operations, attributes, data types and can
be inherited from other interfaces.[4][5]
[71181(9]

The functions of components are the

followings. _

e module : offers name scope.

e interface supports a multiple
inheritance.

e operation : is an identifiable entity that

denotes a service that can be requested.

e data type basic types- short, long,
unsigned long, unsigned
short, float, double, char,
boolean, octet, etc
constructed types- enum,

string, struct, array,

union, sequence, any,
etc

III. Method of increasing performance
in the previous compiler and Propose

An IDL compiler is generate the two
stub routines and other codes mapped
onto C++ code. One is skeleton code that
appears skeleton class for object
implementation in the C++ mapping.

—Defines a CORBA clag9ther is client stub that mapped onto

interface <identifier> [:<inheritance>]

<type declarations>:
<constant declarations>:
<attribute declarations>:
<exception declarations>;

[<op_type>]]<identifier>{<parameters>)
[raises exception] [context]:

4— Defines a method

[<op_type>I<identitier>(<parameters>)
[raises exception]{context]:

1 <=—Dctines a CORBA clggsference

interface <identifier> [:<inheritance>]

Fig 3. Structure of IDL file

An IDL specifies the ability,

‘—Deﬁnes a method

proxy class. Two stub is contains routine

for reciprocal action among objects
implementation. Thus, the distributed
application is produced using class
generated by IDL compiler.

This paper is implemented using

omniORB 2.7. An IDL compiler, omniidl is
consists front end using CFE and back
end take charge of C++ mapping. In the
omniORB 2.7, the client is gain the
about object for calling
operation of object. The reference is gain
by translate the stringified representation
generated by identical ORB or the result
of object operation. The ORB is generate
the proxy local representation about the
object in case of the object is remote

- 845 -

B BAREANGE 2006 FAZTFEEU 29Y AlE

object in the other address space. Side of
clients, the proxy object is identifies with
object implementation. When the client is
request the operation to proxy object, the
ORB is transport the invocation to remote
object. The CORBA is not stipulate how
to transport the request. But, The
CORBA is constraints support the IIOP
that is up-level of TCP/IP.

In Fig 4., shows the progress of process,
when the client is request the operation
in the remote address.

Server Upcall
hipad

Upcalto Object

Client Application
Thread

Acquire a Strand

Block waiting for Reply

Unblock and Start Receiving

Block weiting for & New Request

Relssse Strend

Return o Appication

Fig 4. Progress of process to remote
request

The client is essentially through the
marshal data into message, when the
client request the remote operation.

Before a stub can marshal a data into
its message buffer, the stub must ensure
that the buffer has at least enough free
space to contain the encoded
representation of the data. But, the stubs
produced by typical IDL compilers check
the amount of free buffer space before
every atomic data is marshaled, and if
necessary, expand the message buffer.
These repeated tests are wasteful and
incidence of overheads.
Therefore, we have gain the performance
of application by efficient buffer
management. we suggest the way that
support the marshaling buffer
management through the following
progress. First, we analyzes the overall
storage requirements of every message

that will be exchanged between client and
server. For these analysis, in the Front
End of compiler has maintain the
information that need for the storage
requirements and alignment constraints to
every data types. The value of alignment
is need for GIOP protocol, because of
message is take relative value based on
start address about every type. For
example, the case of real type has take a
size of 8 byte and alignment method is
multiple of 8. Besides, the value is need
for distinguish the fixed or variable
include in each message. This is
distinguished three types. First, the
variable is fixed size. The second,
varable and take maximum value. Final,
not variable and not take maximum
value. In this paper, considering the first
case and optimized. Others are difficult to
predict the size of marshaling buffer and
the check of marshaling buffer size is
need once.

In this paper, we add the routine that
analyzes the overall storage requirements
of every message at compile time and
maintain the enough free space before
marshaling the data into message buffer.
Thus, we have with profit reduced the
unnecessary check of marshaling buffer
size or continuously expand the message
buffer, then the performance of compiler
is increased.

I1V. Conclusion

The development of distributed
application in the standardized
CORBA(Common Object Requ-

est Broker Architecture) environments
reduces the developing time and
maintaining cost of the systems. Because
of these advantages, the deve-

lopment of application is being progressed
in the several fields using the CORBA
environments.

The programmers in the CORBA
environments usually develop the
application programs using the CORBA

- 846 -

A Study on the IDL Compiler using the Marshal Buffer Management

IDL(Interface Definition Language). The
IDL files are compiled by IDL compiler
and translated into the stubs and skeleton
codes which are mapped onto particular
target langua-

ge. The stubs produced by IDL compilers
processes the marshaling a data into
message buffer. Before a stub can
marshal a data into its message buffer,
the stub must ensure that the buffer has
at least enough free space to contain the
encoded representation of the data. But,
the stubs produced by typical IDL
compilers check the amount of free buffer
space before every atomic data is
marshaled, and if necessary, expand the
message buffer. These repeated tests are
wasteful and incidence of overheads,
especi-

ally if the marshal buffer space must be
contin-

ually expanded. Thus, the performance of
the application program may be poor.

In this paper, we remove the routine
that checks the required marshal buffer
space for every atomic data with the
traditional IDL compiler, add the routine
that analyzes the overall storage
requirements of every message at compile
time, and then maintain the enough free
space before marshaling the data into
message buffer. Thus, stub code is
optimized and the performance of
application program is increased.

The study of future is to increase the
perform-
ance of f{ixed-size and variable argument
marsh-

alling.

[Referencesl

[1IOBJECT MANAGEMENT GROUP. The
CommonObject Request Broker:
Architectureand Specification, 2.0 ed, July
1995.

[2]JSRINIVASAN, R. RPC: Remote
procedure call protocol specification

version 2. Tech. Rep. RFC 1831, Sun
Microsystems, Inc., Aug. 1995.

(3lLee Jinho, Lee Gunvoung, Jeong
Taemyung., “Design the IDL-to-Java
Compiler for Java ORB System”
KOREA INFORMATION SCI-

ENCE SOCIETY Journal Vol5 No&8
1998.8

[4]SUN MICROSYSTEMS, INC. ONC+
Developer’s Guide, Nov. 1995.
SUNSOFT, INC. SunSoft Inter-ORB

Engine, Release 1.1, June 1995.
ftp://ftp.omg.org/pub/interop/iiop.tar.Z.
[5ISRINIVASAN, R. XDR: External data

representation standard. Tech. Rep.
RFC 1832, Sun Microsystems, Inc.,
Aug. 1995.

[6INETBULA, LLC. PowerRPC,

Versionl.0 ,1996.

http://www.netbula.com/products/powerr
pc/

[7JSUN MICROSYSTEMS, INC. 1992
ftp://ftp.omg.org/pub/OMG_IDL_CFE _1.3.
[SJIO'MALLEY, S., PROEBSTING, T. A,
AND MONTZ, A. B. USC: A universal
stub compiler. In Proceedings of the
Conference on Communications Archite
ctures, Protocols and Applications
(SIGCOMM) (London, UK, Aug. 1994),

pp. 295--306.

[B1JANSSEN, B., AND SPREITZER, M.
ILU 2.0 alpha Reference Manual. Xerox
Corporation, May,199%6.
ftp://ftp.parc.xerox.comypub/ilw/iluhtrml

[10JA. Leinwand and K F. Conroy, Network
Man-agemrent,, Addison-Wesley Publihing
Company, Inc, pp. 17-36 ,19%6

[11]1.Jacobson , Object-Oriented Software
Engi-

neering, Addison-Wesley Publishing
Com pa-
ny, Inc., 1992

- 847 -

