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A quantum optical system utilizing trapped neutral atoms or ions for qubits is one of promising

candidates for implementing a quantum computerm. Actually, there have been numerous

al®1? achievements showing the positive prospects for it. The number

theoretical®” and experiment
of qubits in such a system is, however, obviously limited by the size of the trapping structure,
while one of the essential factors for a useful quantum computer is the scalability. This difficulty
could be overcome by connecting partially implemented quantum computation nodes to form a
quantum network.

For any unitary operation for the whole quantum network to be possible, controlled unitary
operations between two nodes should be performed as well as local unitary operations at each

D There have been various ways for doing it by means of one or more ancilla qubits“). The

node
underlying idea is to use ancilla qubits to transfer the quantum information between two nodes and
perform local two-qubit operations at the nodes sb that the overall process in effect results in the
desired global two-qubit operation. One method to accomplish the task is to shuttle ancilla qubits or
a quantum node itself physically to a particular position where local interaction between an ancilla

6D This method, however, cannot be directly applicable to

qubit and a quantum node is possible
neutral atom quantum computers. Another method feasible for neutral atom quantum computers as

well is to exploit a photon-mediated interaction between two nodes, such as in entanglement
(12-14) (15-16)

generation , quantum state transfer , and quantum teleportationm'm. On the other hand, there
have also been a scheme in which no ancilla qubit is involved™. The scheme, however, uses a
quantum interferometer and the complex atomic structure of several hyperfine levels instead.

In this work, we introduce a scheme to do a controlled unitary operation between two distant

(15'16), in which two atoms

atoms in a much simpler way. A common quantum communication setup
each trapped in an optical cavity directly communicate through a quantum transmission line such as
an optical fiber connecting the two cavities, is considered. In contrast to earlier methods, no ancilla
qubit is involved in our scheme and the gate operation is done by a simple coherent process

without atomic initialization or measurement.
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