Equilibrium fractionation of oxygen isotopes between inorganic rhodochrosite (MnCO₃) and water at low temperatures

Jeong-Ok_Kang¹⁾ · Sang-Tae Kim²⁾ · Seong-Taek Yun¹⁾

The oxygen-isotope fractionation between rhodochrosite (MnCO₃) and water at low temperature ranges has not been reported. For this study, pure rhodochrosite was precipitated in the laboratory from a Na-Mn'²-Cl-HCO₃ solution at two different temperatures (10 and 25°C). Before and after the precipitation, oxygen isotope composition and pH of the solution were monitored. After the precipitation, the purity of precipitated rhodochrosites was checked with an automated X-ray power diffractometer and its oxygen isotope composition was determined by the conventional H₃PO₄ method at 25°C. For the acid fractionation factor, the value reported for calcite (1.01025) was used.

The results of equilibrium experiments yielded a preliminary equation on the oxygen-isotope fractionation between rhodochrosite and water at low temperatures:

1000 ln $\alpha(MnCO_3-H_2O) = 17.18(10^3/T^{-1}) - 28.44$

where a is the fractionatoin factor, and T is the temperature in kelvin.

Though a more precise acid fractionation factor should be obtained by additional experiments, our present data may provide a new insight for rhodochrosite found in lacustrine and marine sediments and in hydrothermal ore deposits.

주요어: Oxygen isotope fractionation, rhodochrosite and water

¹⁾ Dept. of Earth & Environm. Sci. and the Environmental Geosphere Research Lab., Korea University, Seoul, 136-701, Korea (styun@korea.ac.kr)

²⁾ Dept. of Earth & Planetary Sci., McGill University, Montreal, PQ, H3A 2A7, Canada