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ABSTRACT: This paper studies the problem of inferring
a chemical compound from a feature vector consisting of the
numbers of occurrences of vertex-labeled paths, which has po-
tential future applications for designing new chemical com-
pounds based on the kernel methods. This paper shows that
the problem for outerplanar graphs of bounded degree can be
solved in polynomial time if an alphabet is fixed and the max-
imum length of paths and the number of edges of each face
are bounded by a constant. It is also shown that the problem
is strongly NP-hard even for trees of unbounded degree.

1 INTRODUCTION

Kernel methods have been applied to various classification
problems in bioinformatics [16]. In bioinformatics applica-
tions, it is usually required to develop a mapping from the set
of objects in the target problem to a feature space (i.e., each
object is transformed to a vector of reals) and a kernel function
is defined as an inner product between two feature vectors.
In some cases, a feature space can be an infinite dimensional
space (Hilbert space) and some kemel trick is developed to
compute the value of a kernel function efficiently without ex-
plicitly computing feature vectors [7].

Though kernel methods have been used mainly for clas-
sification problems, a new approach was recently proposed
for designing and/or optimizing objects using kernel methods
[4, 5] (see also Fig. 1). In this approach, a desired object is
computed as a point in the feature space using suitable objec-
tive function and then the point is mapped back to the input
space, where this mapped back object is called a pre-image.
Let ¢ be a mapping from an input space G to a feature space
¥ . The pre-image problem is, given a point y in 7, to find x
in G such that y = ¢(x), where such x is called a pre-image.
It should be noted that ¢ is not necessarily injective or sur-
jective. If ¢ is not surjective, we need to compute the ap-
proximate pre-image x* for which the distance between y and
¢(x) is minimized: x* = arg min, dist(y,¢(x)). Bakir, We-
ston and Scolkopf proposed a method to find pre-images in
a general setting by using Kernel Principal Component Anal-
ysis and regression [4]. Bakir, Zien and Tsuda developed a
stochastic search algorithm to find pre-images for graphs {5].
The pre-image problem for graphs is very important because
it has potential application to drug design {5] by using a suit-
able objective function reflecting desired properties. Several
studies have also been done for designing molecules with op-
timal values using heuristic methods [14, 17] though kernel
methods were not used there.

In a previous work [1], we studied a theoretical aspect of
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Figure 1: Inference of a graph from a feature vector

the pre-image problem. Precisely, we studied the problem of
inferring a graph from a feature vector consisting of the num-
bers of occurrences of vertex-labeled paths. It should be noted
marginalized graph kernels are based on similar types of fea-
ture vectors and have been already applied to classification of
chemical compounds [10, 12]. We showed that this inference
problem can be solved in polynomial time in the size of an out-
put graph if graphs are trees of bounded degree and the lengths
of given paths are bounded by a constant, whereas this prob-
lem is strongly NP-hard even for planar graphs of bounded
degree [1].

In this paper, we show further results on inference of a
graph from path frequency. We show that the inference
problem can be solved in polynomial time for outerplanar
graphs with some reasonable restrictions. This result is impor-
tant from a chemical viewpoint because many chemical com-
pounds have outerplanar graph structures. We also show that
the problem is strongly NP-hard even for trees of unbounded
degree. Though these results are still theoretical, we expect
that these are an important step towards development of prac-
tical methods for designing new chemical compounds using
kemel methods.
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2 PROBLEM

Here, we review the definition of the problem of inferring
a graph from path frequency [1]. Let G(V,E) be an undi-
rected vertex-labeled graph and X be a set of vertex labels.
A sequence of vertices (vo,v1,...,v;) of G is called a path of
length it (h > 0) if {v;,viy1} €E holds fori =0,...,h—1. It
should be noted that the same vertex and the same edge can
appear more than once in this definition. Since most papers
on marginalized graph kernels [10, 12, 16] use this notation
for a path, we employ this definition. Let =¥ be the set of
label sequences (i.e., the set of strings) over X whose lengths
are between 1 and k. Let I(v) be the label of vertex v. For a
path P = (vg,...,v4) of G, I(P) denotes the label sequence of
P (i.e., I{P) = I(w)I(v1)...l1(v4)). It should be noted that the
length of I(P) is the length of P plus one. For graph G and
label sequence ¢, occ(t, G) denotes the number of paths P in
G such that [(P) = r. Then, the feature vector fx(G) of level
K for G(V,E) is an integer vector such that the coordinate in-
dexed by ¢ € 25K is occ(t, G). That is, fx(G) is defined by

fx(G) = (occ(t,G)),cx<k1-

For example, consider a star G1(V1,E}) consisting of four
vertices where the center vertex has label ‘a’ and the other
three vertices have label ‘b’. Then, fi(G,) = (1,3,0,3,3,0)
because occ(a,Gy) = 1, occ(b,G) = 3, occ(aa,Gy) = 0,
occ(ab,Gy) = 3, occ(ba,G1) = 3 and occ(bb,G1) = 0. An-
other example is also given in Fig. 2.

path | occ
a 1
b | 3} aGn=
a1 91 (1,3,0,3,3,0)
ab 3
ba 3
bb | 0
Gi(V1,E1)
path | occ
a 1
b2 fGa=
aa 1,2,0,2,2,2
ab | 2 ( )
ba | 2
G2(V2,E2) bb | 2

Figure 2: Examples of feature vectors for graphs

In this paper, we assume for simplicity that tottering paths
(paths for which there exists some i such that v; = v;;5) are not
counted in feature vectors because removal of tottering paths
does not decrease the prediction accuracy {12]. However, all
the results on graphs in this paper are also valid even if totter-
ing paths are not removed.

It should be noted that there exist the following cases: (i)
there may not exist a graph corresponding to the specified fea-
ture vector, (ii) different graphs are mapped into the same fea-
ture vector. Therefore, we defined the graph inference prob-
lem as follows [1].

Graph Inference from Path Frequency (GIPF) Given a
feature vector v of level K, output a graph G(V,E) satisfy-
ing fx(G) = v. If there does not exist such G(V,E), output
“no solution”.

For the case of “no solution”, we can consider the prob-
lem (GIPF-M) of finding G(V,E) which minimizes the L,
distance between v and fx(G) (see also Fig. 3) [1]. Though
we mainly show results for GIPF here, similar results hold for
GIPF-M.

Figure 3: If there does not exist G(V,E) satisfying fx(G) =
v, “no solution” is output in GIPF, whereas G(V,E) which
minimizes L distance between fx (G) and v is output in GIPF-
M

It is worthy to note here that related graph theoretic prob-
lems have been studied, which include graphical degree se-
quence problems [2], graph inference from walks {13] and the
graph reconstruction problem [11]. However, GIPF and GIPF-
M are considerably different from these and thus the results in
these problems can not be directly applied.

3 ALGORITHM FOR OUTERPLANAR
GRAPHS

In this section, we present a polynomial time algorithm for
GIPF for outerplanar graphs. Before presenting it, we briefly
review our previous results on trees [1].

Theorem 1 {1] GIPF for trees is solved in polynomial time
innfor K =1 and fixed alphabet.

We briefly describe the algorithm used in the proof [1]. For
simplicity, we consider the case of binary alphabet X = {0, 1}.
We construct the table D(...) defined by

D(no, n1,n00,n01,110,n11) =
1, if there exists tree T such that

£1(T) = (ng, n1,n00,n01, 110, 111),
0, otherwise.

This table can be constructed by the following dynamic pro-
gramming procedure.

D(ng,n1,n00,n01,n10,111) = 1 iff.
D(no— l,nl,n00—2,n01,n10,n11) =1 or
D(n()— L,ny,ng0,n01 —1,n10— 1,n11) =1 or
D(ng,ny — 1,ng0,n01 — 1,n10—L,nn) =1 or
D(ng,ny — 1,ng0,n01,n10,n11 —2) = 1.
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The correctness of the algorithm follows from the fact that
any tree can be constructed incrementally by adding a vertex
(leaf) one by one. The required tree (if exists) can be obtained
by using the traceback technique.

In [1], we extended the above result for more general trees.
The core part of the extension is the definition of the dynamic
programming table, which is explained below.

Though we only consider undirected trees, we will treat an
undirected tree as if it were a rooted tree. Let r be the root of
atree T. The depth (denoted by d(v)) of a vertex v € T is the
length of the (shortest) path from r to v. The depth of a tree
(d(T)) is the depth of the deepest vertex.

For each vertex v € T, Tx(v) denotes the subtree of T
induced by the vertex set {v} U {w|wis a descendant of
v, |P(v,w)| < K}, where P(v,w) denotes the (shortest) path
from v tow.

ID(v) denotes the signature (i.e., canonical labeling in [8])
of v where the signature is an integer number of value O(n)
such that ID(v) = ID(V') iff. Tx(v) is isomorphic to Tg(V).
Since we consider constant K and trees of bounded degree,
ID(v) can be computed in O(1) time for each v.

Each vertex v maintains the set of paths which contain v
as the shallowest vertex. It should be noted that each vertex
needs to maintain O(1) paths since we consider constant K
and trees of bounded degree. It should also be noted that each
path is maintained by exactly one vertex.

For each tree T, we associate a table E(d, id) where E(d, id)
denotes the number of vertices v such that d(v) = d and
ID(v) = id. Since there are O(1) different signatures, E(d, id)
consists of O(d(T)) elements.

Let e denotes the vector consisting of E(d,id) for d =
d(T),d(T) — 1,d(T) —2,...,d(T) — K. Let gg(T) denotes
e for T'. It should be noted that the number of dimensions of e
is bounded by a constant.

Then, we construct table D(v, e,d) defined by: D(v,e,d) =
1 iff. there exists a tree T such that fx(7) = v, gx(T) = e and
d(T) = d. Construction of the table is done in an incremental
manner as in the case of K = 1. We only add a new vertex at
depth either d or d + 1. It should be noted that any tree can be
constructed in this manner. Based on this table, we obtained
the following theorem.

Theorem 2 [1] GIPF for trees of bounded degree is solved
in polynomial time in n if K and X are fixed.

Now, we show a new algorithm for outerplanar graphs. A
graph is called planar if it can be drawn in the plane such that
no two edges cross. A graphis called outerplanar if it is planar
and all vertices lie on the outer face of the drawing. It is well-
known that an outerplanar graph can be represented by a tree
(3, 15], where each face of the outerplanar graph corresponds
to a vertex in a tree (see Fig. 4). Though a tree may not be
determined uniquely (as shown in Fig. 5), the uniqueness is
not required here. We denote a tree representation of graph G
by tr(G). .

As in the case of GIPF for trees, we construct the dy-
namic programming table D(v,e,d). However, in this case,
the meanings of e and d are different from those for trees. The
differences (compared with GIPF for trees) are summarized as
follows.

Figure 4: Outerplanar graph and its tree representation, where
white circles and black boxes correspond to vertices of the
original graph and the corresponding tree, respectively

Figure 5: Example where a corresponding tree is not uniquely
determined. In this figure, vertex z is connected to x. But, z
can be connected to y

o d denotes the depth of tr(G),

o e denotes the vector consisting of the numbers of iden-
tical subtrees of t7(G), where information about the cor-
responding face should be attached to each vertex in a
subtree,

o Subtrees of tr(G) should be ordered ones (because edges
in a face has some ordering),

o Vertices (leaves) of tr(G) is added one by one .

In order to develop a polynomial time algorithm, the number
of dimensions of e should be bounded by a constant. That is,
the number of possible subtrees of depth at most K should be
bounded by a constant. For that purpose, we assume that X,
the size of an alphabet, the maximum degree of vertices in G,
and the maximum number of edges of each face are bounded
by a constant. Then, we have the following theorem.

Theorem 3 GIPF for outerplanar graphs of bounded degree
is solved in polynomial time in the size of an output graph if
K and X are fixed and the number of edges of each face is
bounded by a constant.

As in [1], we can extend the result for GIPF-M.

Corollary 1 GIPF-M for outerplanar graphs of bounded de-
gree is solved in polynomial time in the size of an output graph
if K and 3. are fixed and the number of edges of each face is
bounded by a constant.
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4 HARDNESS RESULTS FOR

TREES

Here, we show that GIPF is strongly NP-hard even for trees.
For that purpose, we modify the proof given in [1] where an
NP-hardness result was shown for non-tree graphs.

In the proof for non-tree graphs [1], we used a pseudo
polynomial time transformation from 3-PARTITION [9]. 3-
PARTITION is known to be strongly NP-complete, and is de-
fined as follows: given a set X which consists of 3m elements
x; along with their integer weights w(x;) and a positive integer
B where each w(x;) satisfies B/4 < w(x;) < B/2, find a par-
tition of X into Ay,As,...,A,, such that each A; consists of 3
elements and ¥, .4, w(x;) = B holds for each A;.

In the transformation, a feature vector of level 4 (i.e., K =4)
is constructed from subgraphs of the target graph G(V,E),
where G(V,E) corresponds to a solution to 3-PARTITION.
The target graph has the form shown in Fig. 6 and is con-
structed as below.

Figure 6: Reduction from 3-PARTITION to GIPF [1], where
ay, corresponds to set A, = {x;,x;,x¢}

Welet Z=XU{ajli=1,...,m}U{a,b,c,c’,d}. We iden-
tify a vertex with its label if the vertex with the same label
appears only once in a graph. For each x;, we construct a sub-
graph (called a block) G(x;) shown in Fig. 6. Note that there
are w(x;) vertices with label a in G(x;), and three blocks will
be connected to the same vertex labeled ay, though it is not ex-
plicitly specified by the feature vector which blocks are con-
nected to the same vertex. We connect vertex d to m vertices
with labels a;,’s as in Fig. 6, where three paths of the form
¢’-c-b are also connected to each a;,. The subgraph consisting
of vertices with labels d, a;’s, b, ¢ and (’ is called the center
‘graph and is denoted by G..

The feature vector v is constructed from the following
paths:

PATHS-A: all paths at most length 4 in each block or in the
center graph,

PATHS-B: for each a;, we construct B paths of the form of

G(xi)

w(x; )- a’s
a
T(xi)

X; c b c’
@, O @, O

a a

o000
w(x; )- a’s

Figure 7: Modification of a subgraph for showing NP-
hardness for trees

ap-c’-c-b-a and the corresponding B paths in the reverse
direction.

Then, it was shown in [1] that there exists a graph G(V,E)
such that fx(G) = v if and only if there exists a solution for
3-PARTITION.

Now, we modify the reduction for trees of unbounded de-
gree. Modification is very simple. We only need to replace
G(x;) with T'(x;) as shown in Fig. 7, and K = 4 with K = 3.
Then, we can prove the following in an analogous way as in

[1].

Theorem 4 GIPF is strongly NP-hard even for K = 3 and
trees of unbounded degree.

It is worthy to mention that the degree and the size of X are
not bounded and thus this result does not contradict with the
results in the previous section. We can further modify the NP-
hardness result for trees of bounded degree and of a fixed X
though X can not be any more bounded by a constant (K is
O(log|V})). The modification can be done as in [1] by using
binary tree-like substructures for representing high degree ver-
tices and binary encoding for representing labels of vertices.

Theorem 5 GIPF is strongly NP-hard even for trees of
bounded degree and of a fixed Z.
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5 CONCLUDING REMARKS

We have shown that inference of a graph from path frequency
can be solved in polynomial time in the size of an output graph
if graphs are restricted to be outerplanar graphs of bounded de-
gree, K and X are fixed, and the number of edges of each face
is bounded by a constant. We have also shown that the infer-
ence problem is strongly NP-hard even for trees of unbounded
degree. These results shorten the theoretical gaps between the
positive and negative results in our previous work [1]. How-
ever, there still remain large gaps. For example, the complex-
ity (polynomial or NP-hard) of the following cases should be
studied:

o inference of general graphs of bounded degree from
paths with constant K,

o inference of trees from paths with large K (e.g., K is
o(Ivi).

Development of approximation algorithms for NP-hard cases
of GIPE-M is also interesting future work. '

Though we shorten the theoretical gaps, the proposed algo-
rithms are still not useful in practice because constant factors
depending on K and ¥ are quite large. Therefore, faster and

practical algorithms should be developed. The class of out-

erplanar graphs in this paper covers a large class of chemical
compounds. However, it is known that some chemical com-
pounds are not planar. Thus, itis important to extend the class
of graphs for which GIPF can be solved in polynomial time. In
this paper, we used feature vectors defined by path frequency.
However, probabilities of paths are used in more practical ker-
nels [10, 12]. Therefore, inference of a graph from a feature
vector defined by probabilities of paths should also be studied.
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