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ABSTRACT

Many methods have been developed and are in use for structural size optimization
problems, in which the cross-sectional areas or sizing variables are usually assumed to be
continuous. In most practical structural engineering design problems, however, the design
variables are discrete. This paper proposes an efficient optimization method for structures
with discrete-sized variables based on the harmony search (HS) meta-heuristic algorithm.
The recently developed HS algorithm was conceptualized using the musical process of
searching for a perfect state of harmony. It uses a stochastic random search instead of a
gradient search so that derivative information is unnecessary. In this paper, a discrete search
strategy using the HS algorithm is presented in detail and its effectiveness and robustness,
as compared to current discrete optimization methods, are demonstrated through a standard
truss example. The numerical results reveal that the proposed method is a powerful search
and design optimization tool for structures with discrete-sized members, and may yield better
solutions than those obtained using current method.

'1 . Introduction

Traditionally, many gradient-based mathematical programming methods have been developed and
frequently used to solve structural optimization problemns. The majority of these methods assume that the
cross-sectional areas called sizing variables are continuous. In most practical design problems in structural
engineering, however, the sizing variables have to be chosen from a list of discrete values because this is
due to the availability of components in standard sizes and constraints caused by construction and
manufacturing practices. Although the mathematical methods can consider the discreteness employing the
round-off techniques based on continuous solutions, the rounded-off solutions may result in those far from
optimum, or even result in infeasible values when the number of variables increases. Because most of the
available optimization methods treat the design variables as continuous, they are very inadequate in the
presence of discrete design vanables. On the other hand, a few methods based on mathematical
programming techniques were developed in order to handle the discrete nature of design variables (Liebman
et al. 1981, Hua 1983, Zhu 1986, and John and Ramakrishnan 1987). They provide a useful strategy in solving
a limited problem, but every method has its drawbacks, which include low efficiency, limited rehiability, and
readily being trapped at local optimum. More detailed literature surveys were given by Templeman (198%).

Over the last decade, in order to overcome the computational drawbacks of mathematical
methods, new optimization strategies based on heuristic algorithms such as simulated annealing
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and genetic algorithms (GAs) have been devised for optimal design of discrete structural
system. Especially, the GA-based discrete optimization methods have been'vi'gofouély studied
by many researchers including Rajeev and Krishnamoorthy (1992, 1997), Lin and Hajela (1992),
Wu and Chow (1995a, 1995b), Camp et al. (1998), and Pezeshk et al.' (2000). The GA was
originally proposed by Holland (1975) and further developed by Goldberg (1989) and others,
which is a global search algorithm based on concepts from natural genetics and Darwinian
survival-of-the—fittest. The heuristic algorithms including the GA-based discrete sizing
optimization methods for structures have occasionally overcome several deficiencies of
mathematical methods. Seeking a more powerful, effective, and robust method for discrete
structural optimization is still a major concern to structural engineer.

The main purpose of this paper is to propose a more powerful and efficient optimization
method for structures with discrete sizing variables. In our earlier research (Lee and Geem
2004), a new optimization method for structures with continuous variables was proposed based
on the harmony search (HS) heuristic algorithm and good results were obtained. The recently
developed HS algorithm was conceptualized using the musical process of searching for a
perfect state of harmony (Geem et al. 2001). Compared to mathematical optimization
algorithms, the HS algorithm imposes fewer mathematical requirements to solve optimization
problems and the probability of being entrapped in a local optimum is reduced because this
algorithm is not hill climbing algorithm. Since the HS algorithm uses a stochastic random
search, the derivative information is unnecessary. This new algorithm also considers several
solution vectors simultaneously in a manner similar to the GAs. However, the major difference
between the GAs and the HS algonthm is that the latter generates a new vector from all the
existing vectors, while the former generates a new vector from only two of the existing
vectors (parents). In addition, the HS algorithm can independently consider each component
variable in a vector when it generates a new vector; the GAs cannot, because they have to
maintain the gene structure.

‘In this paper, a new discrete sizing optimization method for structures based on the HS
algorithm is proposed, and a standard truss example from the literature is also presented to
démonstrate the effectiveness and robustness of the proposed method compared to current
optimization methods.

2. A Discrete Optimization Strategy using the Harmony Search Algorithm

The HS heuristic algorithm is based on natural musical performance processes that occur when musicians
search for a better state of harmony, such as during jazz improvisation. A discrete optimization procedure
using the HS heuristic algorithm consists of Steps 1 through 5.

(1) Step 1: Initialize the optimization problem and algorithm parameters

First, the discrete optimization problem is specified as follows;

Minimize fix) st xeX, i=1, 2,.., N (1)

"where f{x) is an objective function, x is the set of each design variable (x;); X; is the set
of possible range of values for each design variable, that is, X; = {xi(1), xi(2), x(K-1), x(K)}
for discrete design variables (xi(1) < xi(2) <..< x{K-1) < x(K)) ; N is the number of design
variables; and K is the number of possible values for the discrete variables. The HS
algorithm parameters that are required to solve the optimization problem are also specified in
this step: harmony memory size (number of solution vectors in the harmony search, HMS),
harmony memory considering rate (HMCR), pitch adjusting rate (PAR) and termination
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criterion (maximum number of searches). Here, HMCR and PAR are parameters that are used
to improve the solution vector. Both are defined in Step 3.

(2) Step 2: Initialize the harmony memory (HM)

In this step, the "harmony memory” (HM) matrix shown in Eq. (2) is filled with as many
randomly generated solution vectors as the size of the HM (ie., HMS) and sorted by the
values of the objective function, flx)

xHMS (2)

(3) Step 3: Improvise a new harmony from the HM or the entire possible range

In the HS algorithm, a new harmony vector, x' = (X1, %555 Xy ) ig improvised from the HM
matrix or the entire possible range. The new harmony improvisation is processed based on
memory considerations, pitch adjustments, and randomization. In the process of memory
considerations, for instance, the value of the first design variable (%) for the new vector can
be chosen from any discrete value in the specified HM range, ie., {x5-x "™} Values
of the other decision variables (%) can be chosen in the same manner. Here, there is a

possibility that the new value can be chosen using the HMCR parameter, which varies
between 0 and 1 as follows:

' xel{x!, ..., x™Y wp.  HMCR
x!
' xeX, w.p. (1- HMCR) (3)

The HMCR sets the rate of choosing one value from the historic values stored in the HM,
and (1-HMCR) sets the rate of randomly choosing one value from the entire possible range of
values (randomization process). For example, a HMCR of 0.95 indicates that the HS algorithm
will choose the design variable value from historically stored values in the HM with a 95%
probability and from the entire possible range with a 5% probability. A HMCR value of 1.0 is
not recommended, because there is a chance that the solution will be improved by values not
stored in the HM. On the other hand, every component of the new harmony vector,
x'=(x1. %3 Xy) | is examined to determine whether it should be pitch-adjusted. This procedure
uses the PAR parameter that sets the rate of adjustment for the pitch chosen from the HM
as follows:

Pitch adjusting decision for

Yes wp. PAR
xi < |No wp. (1-PAR) (4)

The pitch adjusting process is performed only after a value is chosen .from the HM. The
value (1-PAR) sets the rate of doing nothing. A PAR of 0.3 indicates that the algorithm will
choose a neighboring value with 30% X HMCR probability. If the pitch adjustment decision for

X s Yes, and X/is assumed to be xi(k)’ ie., the k-th element in Xi, the pitch-adjusted
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value of %(k) is

X< xlk + m) ®)

where m = the neighboring index, me&{-1, 1}. The detailed flowchart for a: new harmony
discrete search strategy of the HS heuristic algorithm is given in Fig. 1. Note that the HMCR
and PAR parameters introduced in the harmony search help the algorithm find globally and
locally improved solutions, respectively.
(4) Step 4: Update the '
HM

In Step 4, if the new
harmony vector is
better than the worst
harmony in the HM,
judged in terms of the
objective function value,
the new harmony is

A, Discrete size variables (i=1,2,..0)

HMCR: Harmony memory considering rate

PAR: Pitch adjustment rate

HMS: Harmony memory size

HM(*,*): Harmony momery
D,=inf(ran*nPVS)+1 ran: Iiandom .numbers in the range 0.0 ~ 1.0
NDHV(;) = PVS(D,) PVS(*): Possible value §et for 4,
nPVS: Number of possible value sets for 4,
E, Process NDHV(*): A new discrete harmony vector

included in the HM and fo"’(’;l'\"; KBMS)” improvised in Step 3
the existing worst gg HV(S) ;S) E,: Memory considerations
h on is  excluded 3 Yes E,: Pitch adjustments
armony " E, Process No E,: Randomization
from the HM. The HM “—, @ Yes 0 No
is then sorted by the
objective function value. No rre
D,=D,+1 D,=D,-1 /
NDHV() = HM(D, /) NDHV(i) = HM(D,,1)

(5) Step 5: Repeat Steps

. E, Process No E, Process
3 and 4 until the
termunalion criterion : Fig. 1. A harmony improvisation flowchart for
is satisfied discrete design variables

The computations are
terminated when the
termination criterion is satisfied. If not, Steps 3 and 4 are repeated.

3. HS Algorithm-Based Discrete Size Optimization and Design Procedure

The discrete size optimization of structural system involves arriving at optimum values for
discrete cross-sectional areas of members that minimize an objective function, Le., the
structural weight. This minimum design also has to satisfy inequality constraints {(gq) that
restrict discrete sizing variables and structural response. Thus, the size optimization problems
of the structures with discrete variables can be stated mathematically as minimizing the
structural weight as follows:

Minimize W(A) = 274" ®)

subject to 195G A5G, ;=1 2 ¢ (7

where A = (4, A,..., AT is the sizing variable vector that is the cross—sectional areas and
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is to be chosen from a list of available discrete values. W(A4) is the objective function that is
the structural weight, 7is the material density used for each member, A; and L; are the
cross—sectional area and length of the ith member, respectively. G; (A) shown in Eq. (7) is
the inequality constraints, and .G; and pG; are the lower and the upper bounds on the
constraints. For the example presented in this paper, the lower and the upper bounds on the
constraint function include the following: (1) member stresses (:%i<0:%y0;, i=l..n) and (2)
nodal displacements (i <6;<yd; i=lo,m)

In constrained optimization problems, shown in Eqgs. (6) and (7), because the optimum
solution typically occurs at the boundary between feasible and infeasible regions, the penalty
approach has been frequently employed for the fitness measure (Rajeev and Krishnamoorthy
1992, Wu and Chow 1995a and 1995b, Camp et al. 1998). However, to demonstrate a pure
performance of the HS algorithm-based approach proposed for discrete size optimization, the
rejecting strategy for the fitness measure, ie., the optimum solution approached from only
feasible region, is adopted in this study. Fig. 2 shows a procedure of the proposed HS
algorithm-based method to determine optimal cross sections in discrete size optimization
problems. The procedure can be divided into two processes: initialization process and search

{ Start ’

f A
L] ]
)
, Initialization of algorithm parameters for discrete sizing optimization E
) )
) 1
i | harmony memory size (HMS); harmony memory considering rate (HMCR); pitch adjusting rate (PAR); max. !
& i | number of searches; number of 4, (i.e., N); possible value set for 4,, i.e., A(1) <4(2) <... < A(K-1) < 4(K); \
Q|4 ;= discrete sizing variables (cross-sectional areas); i= 1, 2 ,...,N; K = number of possible value set for 4,(K) \
]
8 :
= ! 1
a : P :
g ! [ oo mmmrenno oo (__Uniform random number ) ]
— ! '
= . [ Sorted by objective function] '
Q! \
N Generation of a harmony l F— WA) ;
8. ¥ '
= o '
£ E ; No 1
: . Y !
' Generation of initial HM HM !
! membef stresses (0, < ;< 0) (harmony momory) initialized to !
1 | nodal displacement (6, < 6, < ,8) i.e., solution vectors HMS !
o :
I I IIIIII oot Yes
' No HMCR, PAR i
N
1 { Constraints . Generation of a new harmony from ‘
) N
H satisfied? FEM analysis HM or entire feasible range E
@ | :
3 . Yes '
o ‘ Calculation of F=W(A) | ,
12
o i
. . !
[ Updating of HM !
I New harmony ﬂ E
3 5 better than a generated : . E
' Sorted by objective functuﬂ )
! F = W(A) i
! |
! H

Fig. 2. HS algorithm-based discrete size optimization
and design procedure
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process In the initialization process, HS algorithm parameters such as HMS, HMCR, PAR,
maximum number of searches, number of discrete size varlables (A:), and available discrete
size values (member cross sections A) are first initialized. Harmonies (i.e., solution vectors)
are then randomly generated from the available discrete size values that are equal to the size
of the HM. Here, the initial HM is generated based on a finite element method (FEM)
structural analysis subjected to the constraint functions (Eq. [7]) and sorted by the objective
function values (Eq. [6]). In the search process, a new harmony is improvised from the
initially generated HM or the entire possible value range using the HMCR and PAR
parameters. The new harmony is analyzed using the FEM method, and its fitness is evaluated
using the rejecting strategy for the constraint functions. If satisfied, the weight of the
structure is calculated using the objective function. If the new harmony is better than the
previous worst harmony, the new harmony is included in the HM and the previous worst
harmony is excluded from the HM. The HM is then sorted by the objective function value.
The computations terminate when the maximum number of the search criterion is satisfied. If
not, this step is repeated.

4. lllustrative Example: Twenty—five—bar space truss

A 25-bar space truss, which is one of the most popular standard tests that have been used
in previous discrete size optimization papers, was considered in this study using a FORTRAN
computer program. The FEM displacement method was used to analyze the space truss. To
demonstratethe performance of the new discrete optimization method developed based on the
HS algorithm, five cases shown in Table 1 that have different algorithm parameters were
used for the example. The values for the HS algorithm parameters (ie., HMS, HMCR, PAR)
shown in table were arbitrarily selected by considering that Geem et al. (2001) recommended
the parameter values ranged between 10 and 50 for the HMS, between 0.7 and 095 for the
HMCR, and between 0.2 and 05 for the PAR to produce good performance of the HS
algorithm, which are based on an empirical basis. The maximum number of searches was set
as 30,000.

The 25-bar transmission tower space truss, shown in Fig. 3, has been discrete size
optimized by many researchers. These include Rajeev and Krishnamoorthy (1992), Wu and
Chow (1995a,-1995b), and Adeli and Park (1996). In these studies, the material density was 0.1
Ib/in? and modulus of elasticity was 10,000 ksi. This space truss was subjected to the single
loading condition shown in Table 2. The structure was required to be doubly symmetric about
the x- and y-axes; this condition grouped the
truss members as follows: (1) Ay, (2) Az ~ As,
(3) As 7 Ag, (4) Ap T An, B) A T A 6
A 7 A, () Az T Az, and (8) Azn T Asm.

Table 1. HS algorithm parameters used
- for all examples

Cases HMS HMCR | PAR
Case-1 20 09 0.45
Case-2 40 09 0.45
Case-3 30 09 04
Case-4 30 08 03
Case-5 30 09 03 Fig. 3. Twenty-five-bar space truss
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Table 2. Loading conditions for the All members were constrained to 40 ksi in both
tension and compression. In addition, maximum
displacement limitations of 0.35 in. were imposed on

25-bar space truss

Node Px Py Pz every node in every direction. A set of available
1 10 -10.0 -100 cross—sectional areas used for this example was D&E
2 0.0 -100 -10.0 {0.1, 02, 0.3,..24, 25, 26, 28 3.0, 3.2, 34} that has
3 0.5 0.0 0.0 30 discrete values. The HS algorithm-based approach
6 0.6 0.0 0.0 was applied to the space truss. Table 3 presents each
Note: loads are in kips. HS result along with those reported by Rajeev and

Krishnamoorthy (1992) and Wu and Chow (19953,
1995b) using the GA-based methods and Adeli and Park (1996) using the neural dynamics
model. After approximately 13,500 through 19,000 searches (FEM structural analyses), the best
solution vector for each case and the corresponding objective function value (weight of the
structures) were obtained from the HS approach, as shown in the table. All HS results are
better than the values obtained in all of the previous investigations.

Fig. 4 shows a comparison of convergence capability between the HS results for all cases
and those obtained by the GA-based approaches. While a pure GA proposed by Rajeev and
Krishnamoorthy (1992) obtained a minimum weight of 546.01 lb after 600 structural analyses,
the HS cases obtained minimum weights of 505 through 520 lb at the same number of
analyses, as shown in figure. On the other hand, a steady-state GA proposed by Wu and
Chow (1995b) obtained a minimum weight of 486.29 Ib after 40,000 analyses, while all cases
except Case-1 in the HS approach obtained the same weight after approximately 2,000 through
6,000 analyses, as shown in Fig. 4. It should be noted that the HS approach for discrete size
optimization is a powerful search and optimization method compared to the above-mentioned
GA-based methods in terms of both the optimal solution obtained and the convergence
capability.

Table 3. Optimal result for 25-bar space truss

. . HS results Rajeev & Wu Wu Adeli
Design variables Krish. |& Ch & Ch & Park
A (ind Case-1 | Case-2 | Case-3 | Case-4 | Case-5 St ow oW ar
(1992) (1995a) | (1995b) (1996)
1 Ai 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.6
2 A 7 As 0.6 0.3 0.3 05 0.3 1.8 0.6 05 1.4
3 As T Ag 34 3.4 34 34 34 2.3 32 34 2.8
4 Ap ~ An 0.1 0.1 0.1 0.1 0.1 0.2 0.2 0.1 05
5 A T Ap 1.6 2.1 2.1 19 2.1 0.1 15 15 0.6
6 Ay 7 Arx 1 1 1 09 1 0.8 1 0.9 05
7 Aig ~ An 0.4 0.5 05 05 05 1.8 0.6 0.6 15
8 A T Ax 34 34 34 34 34 3.0 34 34 3.0
Weight (Ib) 48577 | 484.85 | 48485 | 485.00 | 484.85 546.01 491.72 486.29 543.95
Number of
13,736 | 14,163 | 13523 | 17,159 | 18734 600 - 40,000 -
structural analyses

5. Conclusions

A new discrete size optimization method for structures using the HS algorithm was
proposed to minimize the weight of the structure. A standard test example from the literature
was presented to demonstrate the effectiveness and robustness of the proposed approach
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A HS optimum solution (Case-3, 13,523 searches, 484.851b} compared to other optimization methods.

640 . .
[ Note: * denotes a weight caloalated || L 1€ 1llustrative example revealed that the
620 |- Zyth; best solution vector optimal results were better than those
0 harmony memor; . . . . .
. 600 \ -, ; cy - obtained from all previous investigations.
b ; ase- e
wol T Seeeeees e Case-2 Also, the convergence capability results
e ' gase'i obtained using the proposed HS method
= | Sty [ ase- . -
& %0 -4 A(BOD, 546.11) e Cases | OUtperformed those obtained using the
< sa0 By o Numberof amal GA-based methods. In conclusion, our study
- E_: H umber of analyse .
2 g0l 4 HS rosults obtained at ks, for HS to obtaina weight | SUZZEStS that the new HS-based method is
' 600 analyses — Tl 0f486.201b (B) potentially a  powerful search  and
500 | N . R . .
... .Optimal Solufions(GAS]........ Y Opt%m%zat?on technique for_ solv.mg struc'tlfral
480 'aRajeev and Krishnamoorthy(1992) B&O'OZ)_()-;{;BZBID) optimization problems with discrete sizing
a0 20 and Chow{19%5) i e variables. The HS algorithm-based method
1 10 100 1000 10000

Number of searches (FEM analyses) is simple and mathematically less complex.
Fig. 4. Convergence history of the minimurn The method is not limited to truss
structural optimization problems. Besides
trusses, this method can be applied to other
types of structural optimization problems including frame structures, plates, and shells.

weight for 25-bar space truss
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