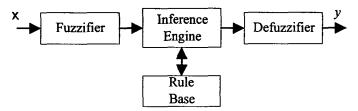


Design of A Fuzzy Logic Control System and Its Stability Analysis

2005. 4. 29

Byung-Jae Choi School of Electronic Eng., Daegu University KOREA


Design of A Fuzzy Logic Control System and Its Stability Analysis

-1-

Introduction

- Fuzzy Logic Controller (FLC)
 - ✓ employs fuzzy logic and fuzzy inference in control systems
 - ✓ is superior to their corresponding linear controllers to control linear and nonlinear processes
 - ✓ successfully applied to many industrial and commercial applications

Design of A Fuzzy Logic Control System and Its Stability Analysis

-2-

Introduction

Fuzzy Control Rule

IF rocess states THEN <control variable </pre>

 $R^{(j)}$: IF x_1 is LX_1^j and \cdots and x_n is LX_n^j THEN y is LY^j

- ♦ Input Variables of FLCs
 - ✓ Representing the contents of the rule antecedent
 - ✓ ex) Error, Change-of-error, Sum-of-errors, and etc
- ◆ Output Variables of FLCs
 - ✓ Representing the contents of the rule consequent
 - ✓ ex) Control Input or Incremental Control Input

Design of A Fuzzy Logic Control System and Its Stability Analysis

-3-

New Design of FLC

• n-th Order Process (linear or nonlinear)

$$\dot{\mathbf{x}} = \mathbf{F}(\mathbf{x}, \mathbf{u}) \qquad \mathbf{y} =$$

$$\mathbf{x} = [x_1, x_2, \dots, x_n]^T = [x, \dot{x}, \dots, x^{(n-1)}]^T$$

- ightharpoonup F(x, u): partially known continuous functions
- ▶ $x(t) \in R^n$: the process state vector
- \triangleright $y(t) \in R$: the output of the system
- ◆ Tracking Error Vector

$$e(t) = x(t) - x_d(t)$$
$$= [e, \dot{e}, \dots, e^{(n-1)}]^T$$

Design of A Fuzzy Logic Control System and Its Stability Analysis

◆ Various Rule Tables

✓ Kickert and Mamdani

Li and Gatland

è	NB	NM	NS	NO	PS	РМ	PB	
PB			NM			<u> </u>		
PM			LATIN	NB NM				
PS	F	s	NO					
PO	_	PM		NO	NS			
NO	1 "			NO N	NS	NM		
NS			P	PM		NS		
NM		P	n		D14			
NB	PB			PM				

é	NL	NM	NS	ZR	P\$	PM	PL
PL	zr	ps	pm	<u>kd</u>	pl	pl	胆
PM	ns	zr	ps	pm	良	ρl	ρl
PS	nm	ns	zr	ps	pm	ρl	pl
ZR	nl	nm	n.s.	ZT .	ps	pm	ρl
NS	nl	nl	nm	ns	Zŗ	ps	pm
NM	nl	nl	nl	nm	ns	Zſ	ps
NL	nl	ni	וַתֵּ	nl	nm	ns	zr

(0: zerO, N: Negative, P: Positive S: Small, M: Medium, B: Big)

Design of A Fuzzy Logic Control System and Its Stability Analysis

-5-

New Design of FLC

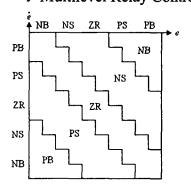
- ◆ Most Conventional FLCs: PD-type or PI-type
 - ✓ Input Variables : Error and Change-of-error
 - \checkmark Output Variable : Control Input or Incremental Control Input
 - → Suitable for Simple Second Order Processes
- ◆ Common Properties of 2-dim. Rule Tables
 - ✓ Zero band is built around the neighborhood of the main diagonal line in the normalized space
 - ✓ Negative (Positive) control actions are exerted above (below)
 the line
 - ✓ Absolute magnitude of control actions is strengthened proportional to the distance from the zero band

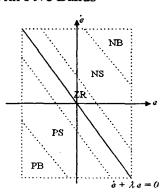
◆ Consideration of Conventional FLC: PD-type FLC

 R_{PD}^{l} : IF e is LE^{l} and é is LDE^{l} THEN u is LU^{l}

 R^1_{PD} : IF e is NB and \acute{e} is PB THEN u is ZR

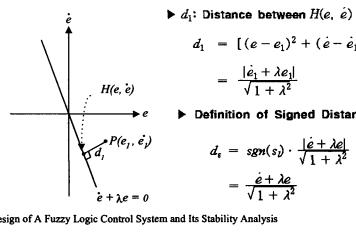
é	NB	NS	ZR	PS	PB
PB	ZR	NS	NS	NB	NB
PS	PS	ZH	NS	NS	NB
ZB	PS	PS	ZR	NS	NS
NS	PB	PS	PS	ZR	NS
NB	РВ	РВ	PS	PS	ZR


Design of A Fuzzy Logic Control System and Its Stability Analysis


-7-

New Design of FLC

- Consideration of Conventional FLC
 - → Multilevel Relay Controller with Five Bands



Design of A Fuzzy Logic Control System and Its Stability Analysis

Derivation of New Variable called Signed Distance

▶ d_1 : Distance between $H(e, \ \acute{e})$ and $P(e_1, \ \acute{e}_1)$

$$d_1 = [(e - e_1)^2 + (\dot{e} - \dot{e}_1)^2]^{1/2}$$
$$= \frac{|\dot{e}_1 + \lambda e_1|}{\sqrt{1 + \lambda^2}}$$

 \blacktriangleright Definition of Signed Distance $d_{\it s}$

$$d_s = sgn(s_{\hat{\nu}}) \cdot \frac{|\dot{e} + \lambda e|}{\sqrt{1 + \lambda^2}}$$
$$= \frac{\dot{e} + \lambda e}{\sqrt{1 + \lambda^2}}$$

Design of A Fuzzy Logic Control System and Its Stability Analysis

-9-

New Design of FLC

Design of Simple-structured FLC ✓ Single-input FLC (SFLC)

$$u = -\phi(d_{\mathfrak{s}})$$

IF d_s is $LDL^{(k)}$ THEN u is $LU^{(k)}$

ďs	NB	NS	ZR	PS	РВ
и	PB	PS	ZR	NS	NB

- ◆ Extension to General Case
 - ✓ Input Variables : Error and its time derivative terms
 - ✓ Rule Form

$$R_{(2)}^{(k)}$$
: If e_1 is $LE_1^{(k)}$, e_2 is $LE_2^{(k)}$, \cdots , and e_n is $LE_n^{(k)}$ then u is $LU^{(k)}$

- ✓ Switching line is changed to switching hyperplane on *n*-dim. Space
- ✓ Switching Hyperplane

$$S_1: e^{(n-1)} + \lambda_{n-1}e^{(n-2)} + \cdots + \lambda_2 e + \lambda_1 e = 0$$

Design of A Fuzzy Logic Control System and Its Stability Analysis

-11-

New Design of FLC

- ◆ Extension to General Case
 - ✓ Distance with Sign between Switching Hyperplane and Operating Point

$$D_{s} = \frac{e^{(n-1)} + \lambda_{n-1}e^{(n-2)} + \cdots + \lambda_{2}e^{(n-2)} + \lambda_{1}e}{\sqrt{1 + \lambda_{n-1}^{2} + \cdots + \lambda_{2}^{2} + \lambda_{1}^{2}}}$$

- ✓ Information about all process states as well as the error and the change-of-error
- ✓ Rule Form for SFLC in n-dim. Case

$$R_{GSI}^{(k)}$$
: IF D_s is $LGDL^{(k)}$ THEN u is $LU^{(k)}$

$D_{\mathfrak{s}}$	NΒ	NS	ZR	PS	PB
и	PB	PS	ZR	NS	NB

Stability Analysis

- ◆ Perturbed Lure System [3]
 - \checkmark Expanding the system into a Taylor series about (x_0, u_0)

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u} + \mathbf{g}(\mathbf{x}, \mathbf{u}),$$

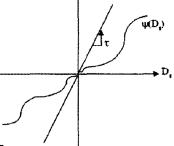
 $\mathbf{v} = \mathbf{x}.$

$$A = \frac{\partial \mathbf{F}}{\partial \mathbf{x}} \Big|_{(\mathbf{x}_0, \mathbf{u}_0)}$$
, $B = \frac{\partial \mathbf{F}}{\partial \mathbf{u}} \Big|_{(\mathbf{x}_0, \mathbf{u}_0)}$

- g(x,u) stands for higher-order terms in x and u

Design of A Fuzzy Logic Control System and Its Stability Analysis

-13-



Stability Analysis

- ◆ From General Case of Proposed FLC
 - ✓ Output of SFLC is symmetric with respect to zero and bounded by a linear gain
 - \checkmark Control input u

$$u = -\phi(D_s)$$

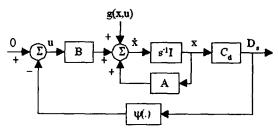
 $\checkmark \phi(\cdot)$ is a nonlinear function that riongs to a sector [0, r], where r rive constant

Stability Analysis

$$\begin{split} & \checkmark \text{ As } \mathbf{x}_{d} = 0 \\ & D_{s} = \frac{e^{(n-1)} + \lambda_{n-1}e^{(n-2)} + \dots + \lambda_{2}\dot{e} + \lambda_{1}e}{\sqrt{1 + \lambda_{n-1}^{2} + \dots + \lambda_{2}^{2} + \lambda_{1}^{2}}} \\ & = \frac{1}{\sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}}} \left(x^{(n-1)} + \lambda_{n-1}x^{(n-2)} + \dots + \lambda_{2}\dot{x} + \lambda_{1}x \right) \\ & = C_{d}\mathbf{x}, \\ & C_{d} = \frac{1}{\sqrt{\sum_{i=1}^{n} \lambda_{i}^{2}}} \left[\lambda_{1}, \lambda_{2}, \dots, \lambda_{n-1}, 1 \right], \quad \lambda_{n} = 1. \end{split}$$

Design of A Fuzzy Logic Control System and Its Stability Analysis

-15-


Stability Analysis

✓ The system with SFLC

$$\dot{x} = Ax + Bu + g(x, u)$$

$$u = -\phi(D_s) \qquad \qquad \phi(D_s)[\phi(D_s) - \tau D_s] \le 0$$

$$D_s = C_d x$$

Design of A Fuzzy Logic Control System and Its Stability Analysis

Stability Analysis

Theorem [5]

Consider the above system, where A is Hurwitz, (A,B,Cd) is a minimal realization of $C(s) = C_4(sI - A)^{-1}B$, and the nonlinearity g(x,u) is bounded as follows:

$$|| \left| g(\mathbf{x},\mathbf{u}) \right||_2 \leq \nu ||\mathbf{x}||_2 \leq \frac{\varepsilon_g}{2||\mathbf{P}||_2 + 2\eta \varepsilon^2 ||\mathbf{C}_d||_2^2} ||\mathbf{x}||_2 \ ,$$

$$\|P\|_{2} = [\lambda_{\max}(P^{*}P)]^{1/2}, \ \nu > 0, \ \varepsilon_{g} > 0, \ ,$$

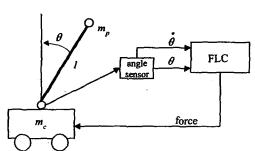
and $\phi(\cdot)$'s a time-invariant nonlinearity that satisfies the sector condition globally. Then the system is absolutely stable if there is $\eta \ge 0$ with $-\frac{1}{\eta}$ not an eigenvalue of A such that

$$Re[1 + (1 + j\eta\omega)\tau G(j\omega)] > 0, \forall \omega \in \mathbb{R}$$
,

$$G(j\omega) = \text{Re}[G(j\omega)] + j \text{Im}[G(j\omega)].$$

Design of A Fuzzy Logic Control System and Its Stability Analysis

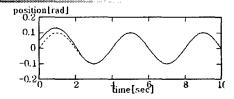
-17-

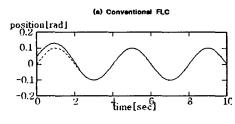

Simulation Example

Inverted Pendulum System

✓ System Configuration

$$\dot{\theta} = \frac{g\sin\theta + a\cos\theta - \mu_{\beta}w^{2}l\cos\theta\sin\theta}{4(4/3 - \mu_{\beta}\cos^{2}\theta)}$$





Simulation Example

✓ Control Performance

(b) Proposed SFLC

Design of A Fuzzy Logic Control System and Its Stability Analysis

-19-

Concluding Remarks

- Design of Simple FLC called SFLC
- ◆ Properties of SFLC: 1-dim. Rule Table
 - ✓ Decrement of No. of Control Rules
 - ✓ Decrement of No. of Tuning Parameters
 - ✓ Alleviation of Computational Complexity
 - ✓ Easy of Generation, Modification, and Tuning of Control Rules
- ◆ Stability Analysis for Proposed SFLC: Absolute Stability
- ♦ Simulation using Inverted Pendulum System Design of A Fuzzy Logic Control System and Its Stability Analysis

- [1] D. Driankov, H. Hellendoorn, and M. Rainfrank, An Introduction to Fuzzy Control. Springer-Verlag Berlin Heidelberg, 1993.
- [2] K. L. Tang and R. J. Mulholland, "Comparing fuzzy logic with classical controller design," *IEEE Trans. Syst., Man, Cybern.*, vol. 17, no. 6, pp. 1085-1087, 1987.
- [3] G.-C. Hwang and S.-C. Lin, "A Stability Approach to Fuzzy Control Design for Nonlinear Systems," *Fuzzy Sets and Systems*, vol. 48, pp. 279-287, 1992.
- [4] B.-J. Choi, S.-W. Kwak and B. K. Kim, "Design of a Single-Input Fuzzy Logic Controller and Its Properties," Fuzzy Sets and Systems, vol. 106, no. 3, pp. 299-308, 1999.
- [5] B.-J. Choi, S.-W. Kwak and B. K. Kim, "Design and Stability Analysis of a Single-Input Fuzzy Logic Controller," *IEEE Trans. Syst., Man, Cybern.*, vol. 30, no. 2, pp. 303-309, 2000.