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Choquet integrals and fuzzy measures
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Abstract

In this paper, we consider fuzzy measures and Choquet integrals. Also we discuss some results proved by us and

new works.
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1. Introduction.

It was well-known that closed set-valued functions
had been used repeatedly in many papers [1,24-13,
26,27]. Using these properties, we have been studied
some characterizations of closed set-valued Choquet
integrals ([56]) and convergence therems for
interval-valued Choquet integrals ([7-9]). We defined
Choquet integralof measurable fuzzy number-valued
functions and comonotonically additive interval-valued
functional which generalize the concept of a
comonotonically additive functionals and study some
properties of them. And we also investigate some
relations between comonotonically additive
interval-valued functionals and interval-valued Choquet
integrals under sufficient conditions([10-131).

In section 2, we list various definitions and notations
which are used in the proof of our results. In section
3-7, using these definitions and properties, we introduce
various results as follows;

(1) Functionals represented by interval-valued Choquet
integrals and define  comonotonically additive
interval-valued functional on a suitable class of interval
number-valued functions,

(2) The Choquet expected
number-valued random variables,

(3) The Choquet expected fuzzy number-valued utilivy
functions.

value of fuzzy

We now study the following topics;

(4) Interval-valued Choquet integrals in multicriteria
decision aid,

(5)  Order
functionals,

(6) Correlation coefficients of interval-valued

invariant interval-valued aggregation

fuzzy measures, Choquet integrals, comonotonically additive functionals, Hausdorff metric.

fuzzy numbers by utilizing Choquet integral

mstead of Riemann integral, etc.

2. Definitions and preliminaries.

A fuzzy measure on a measurable space (X, Q) is an
extended real-valued function x : Q — [0, o] satisfying
i) u(@)=0,

(i) #(A) <p(B), whenever A, BeQ, ACB.
A fuzzy measure p is said to be lower semi-continuous
if for every increasing sequence {A,} of measurable sets,

we have p(U5_4,)= lirr.}o;z(A,,). A fuzzy measure g

is sald to be upper semi-continuous
decreasing sequence {A,)

if for every
of measurable sets and

u(A;) < oo, we have p(N5_,A,)= limu(A,). If pis

both lower semi-continuous and upper semi—continuous,
it is saild to be continuous. Recall that a function
f: X—[0,0] is sald to be measurable if
{(MAx)>ate for all as(—o0, ),

Definition 2.1 (1) The Choquet integral of a measurable

function f with respect to a fuzzy measure g is
defined by

(O [ fdu= [~ n(Gif=)> Mar

where the integral on the right-hand side is an ordinary
one.

(2) A measurable function f is called Choquet
integrable if the Choquet integral of f can be defined
and its value is finite.



Throughout the paper, R*
[0, ),

will denote the interval

KR")={la, b)la,b=R* and a<b}.

Then a element in I R*) is called an interval number.
On the interval number set, we define; for each pair
[a,8),[c,dlel(R*) and keR",
[a,b]+[c,dl=[atc, btd],
fa,0)-le.d}={a-c,b-d,
Ha,bl=[ka, kb],
[a, b]l<[c,d] if and only if
a<b and c<d,
Then (X RY),dy) is a metric space, where dy is the
Hausdorff metric defined by

di(A, B)=max{ sup ,e inf ,egx— i,
SUD yepinf Lo alx— 1)

for all A,BeKR"). We note that [a, b]<[c, d] if and
only if [a,bl<[c,d] orla bl#[c d]. It is easily to
show that for [a,b], [c.dleKR"),

di(la, b, [c,d)=max{la—d,|6—d}.

Let C(R*) be the class of closed subsets of R*.
Throughout this paper, we consider a closed set-valued

function F: X — C(R")\{®} and an interval
number-valued function F: X — KR")\{@}. We
denote that dy— Li_’noxo A,=A if and only if

L‘l_r};d,,(A,,,A)=0, where A<I(RY) and {AJJCIR™).

Definition 22 A closed set-valued function F is said
to be measurable if for each open set O CR*,

F~ YO = (xeXIF(x)NO+0}eQ.

Definition 2.3 Let F be a closed set-valued function.
A measurable function f: X — R* satisfying
Ax)eF(x) for all x=X

is called a measurable selection of F.

We say f: X — R* isin L) if and only if fis
measurable and (O) ff du{co. We note that ”

x€X p—a.e” stands for "x€X p-almost
everywhere”. The  property P(x) holds for
x€X p—a.e. means that there is a measurable set A
such that u#(A)=0 and the property P(x) holds for all
x€A°, where A° is the complement of A.

Definition 24 let f,g be measurable nonnegative
functions. We say that fand g are comonotonic, in

symbol f~g if and only if

ACAX) = glx)<g(x’) for all x,x’eX.

Theorem 2.5 Let f, g, 2 be measurable functions. Then
we have

O £~ r,

2 f~2 = g~/f,

(3) f~ a for all asR*

4 f~gand f~h = f~ (g+h).

Theorem 26 Let
functions.
D If f<g, then (O [ faus(C) [ gdu.
(2) f f~ g and a,b=R™*, then
(O [(ar+ te)du=a(C) [ fau+ K C) [ gdu.

f, g be nonnegative measurable

Definition 2.7 (1) Let F be a closed set-valued
function and A€ 7. The Choquet integral of F on A
is defined by

(O) [ Fau=A(C) [ fiu | feSLPY)

where SF) is the family of selections of F, that is,
S(E)={f| f is measurable and Ax)eF(x) x€X p—a.e.}

(2) A closed set-valued function F is said to be
Choquet integrable if (C) [Fdu+ @.

(3) A closed set-valued function F is said to be
Choquet integrably bounded if there is a function

g=L(4) such that

1F(N = sup ,epnld<g(x)  for all xe X,

Instead of (O) fodp, we will write (C)de,u. Let

us discuss some properties of interval-valued Choquet
integrals which mean Choquet integrals of measurable
interval number-valued functions.

Theorem 2.9([12, 27]) Let 1 be a continuous fuzzy
measure and F a Choquet integrably bounded
set-valued function.

(1) If F is closed set-valued, then (C) f f du is closed.

(2) If F is convex set-valued, then (O) ff du is convex.

(3) ¥ F is interval-valued, ie. F(z)=[f"(z),f (z)],
for all z € X, then

(O [Fau=1(0) [ f.d,(O) [ fapm.

We recall that £, f. are Choquet integrable selections



of F in [8].

3. Comonotonically additive interval-valued
functionals.

We assume that X is a locally compact Hausdorff
space and the class 2, of its Borel subsets. Let K* the
set of continuous nonnegative functions defined on X
with compact support.

Definition 3.1
K*.
(1) ¢ is comonotonically additive if and only if

Let ¢ be a real-valued functional on

f~g= 2(f+@=2(N+ £(g for all fgeK".
(2) ¢ is positively homogeneous if and only if
2(ap=ae (P for all aeRt and feK".
(3) ¢ is monotonic if and only if

f<g= ¢(N<2(g for all f,g=K™*.

Since the Choquet integral with respect to every fuzzy
measure 1S a comonotonically additive, positively
homogeneous and monotonic functional, we have the
following corollary.

Corollary 32 For every fuzzy measure gz, there exists
a outer regular measure g, such that for every feKt,

(o) ffdu=(C)ffd,u,.

We consider interval-valued Choquet integrals with
respect to fuzzy measure and will define comonotonically
additive, positively homogeneous and monotonic
interval-valued functional on the class TJ[7,] of
[Choquet integrably bounded] interval number-valued
functions.

Definition 3.3 Let F,Ge7. We say that F and G are
comonotonic, in symbol, F~G if and only if

@) f() = (0=’ (x") for all x,x'eX, and
(i) £.(0)<(f(x) = g () <g.(x) for all x,x'€X,
where

F(x)= sup{F(x)}, f.(x) = inf{F(x)}, g"(x) = sup{G(x)},
and g.(x)= inf{G(x)}}.

From Definition 3.3, clearly we have the following
theorem.

Theorem 34 Let F,Ge 3. Then we have
(1) F~F

(2) F~G = G~F,
(3) F~A for all A=I(R*),
(4 F~G, F~H= F~G+H .

Theorem 3.5 Let F,Ge 7. If F~G, then we have

(O [(F+Gdu=(C) [ Fau+(C) [ Gan.

Theorem 3.6 Let F,G=7,. Then we have
(1) (O [ aFdu=a(C) [Fau for all a=R*,
@) if F<G, then (O [Fdu<(C) [ Gap.

We consider the class of interval number-valued
functions with continuous selections;

J,={Fe7,| S(F)CK").

Definition 3.7 (1) A mapping T: 7, — KR") is said
to be an interval-valued functional.

(2) An interval-valued functional T is comonotonically
additive if and only if

F~G = T(F+G)=T(F)+ T(G).

(3) An interval-valued functional T
homogeneous if and only if

T(aF)=aT(F) for all a=R".

(4) An interval-valued functional T is monotonic if and
only if for each pair F,Ge T,

F<G= T(F<TG).

is positively

Definition 38 Let# : K* - R* be a real-valued
functional. A mapping T,: T, = KR") is said to be
an interval-valued functional induced by ¢ if for all
FeT,,

T, (N={e(N] feSAP)}.

Theorem 39 If T: 7,— KR*) is defined by
T(F)=(C) [Fdu for all FeJ, then T is a

comonotonicallly  additive, positively
monotonic interval-valued functional.

homogeneous,

Theorem 3.10 Let ¢ : K* — R* be a comonotonicallly
additive, positively homogeneous, monotonic functional.
If T, an interval-valued functional induced by #,
there exists a outer regular fuzzy measwre ¢ on Q
such that for all Fe7T,,



T (H)=(0) [Fau=12(£), £()),

where f(x) = sup{F(x)} and f.(x)= inf{F(x)}.

Theorem 3.11 let ¢ : K* - R* be a real-valued
functional. If Zis comonotonically additive, positively
homogeneous and monotonic, so is T ,.

4. The Choquet expected value of fuzzy
number—-valued random variables.

Definition 4.1 (1) A mapping Y:2—F(R*) is
called a fuzzy number-valued random variable if for
each a€0,1] [Y]": 2—>I(R*) is an

number-valued random variable.

interval

@ ¥ is called Choquet integrably bounded if [¥]° is
Choquet integrably bounded.

Let Y: 2—F(R") be Choquet integrably bounded
fuzzy number-valued random variable. We define the
Choquet expected value(denoted by Ec(?)) of ¥ as
that element V € F(R™) which satisfies

(V] = (C)/[?]*dp, for all A € [0,1].

We should prove that effectively the family

{(C)/ [Yi*dp | A € [0,1]} defines a fuzzy set for

this purpose, we using the following lemma:

Lemmma 42 Let {[’ "] A€ [0,1]} be a given
family of nonempty interval numbers. If (i) for all
o<\ <], [aA‘, b :)[a’\', b'\’] and (ii) for any
nonincreasing sequence {Ax} in [0,1] in converging to
A, [@ 0] = NiZi[a™ b™], then there exists a unique
fuzzy numberV € F(R™) such that the family [a% "]

represents the A-level sets of V.

Conversely, if [a’,b"] are the the A-level sets of a

fuzzy number V € F(R"), then there the conditions
(i) and (i) are satisfied.

In order to see that {(C)/ [V]*dul A e [0,1])

define a fuzzy number in F(R"), we check (i) and (ii)

as in the following:
G if
(71 (w) C[F]*(w), for all we 2 That is,
ye S(¥™) implies v € S((Y]"). Thus, we have

0<M<X<1l then we have

(C) [(¥1"du < (C) [(T1"du, and

(i) let {A.}with AxtA which means a monotone

increasing sequence, we have to see that
(©) [IFP+du = N34 (C) f(¥1™dp.

Therefore, we can obtain the following:

Theorem and Definition 4.3 Let Y: 2—F(R*) be

Choquet integrably bounded fuzzy number-valued

random variable. Then there exists a uniquely fuzzy
number E.(Y) with A-level sets E.([Y]). E.(Y) is

called the Choquet expected value of 17.

5. The Choquet expected fuzzy
number—-valued utility function.

Expected utility theory linearity in
probabilities and a utility function, which is either

concave or convex if a dicision—maker is risk averse or

combines

seeking. However, maximization of expected utility as a
criterion of choice among the alternatives involving risk
fails to explain the existence of both insurance and
such that

u: 2—R"* a fuzzy measure # on J and a set X of

lotteries. Given an utility function u,
comonotonic prospects Z:S— such that z,%' € X
are comonotonic if and only if there are no w, w, € S
such that z{w) > z(w) and #'(w) < @(w;), the

Choquet integral permits the evaluation of the Choguet
expected utility function as in the following theorem:



Definition 5.1 The preference relation > on X is
defined by

(1) > is a pomplete and transitive, that is,

for Ve,ye X; z>y or y> 2z and

forVz,y,ze X; z>yandy >z — x> 2
(2) > 1is continuous, that is,

for Vz,9,z€ X, Va € (0,1),

z>yandy > z— Ja,f € (0,1) such that

ar+(l—a)z > yandy > fz+(1 —f)=

(3) > is comonotonic independence, that is,

for Vz,y,z€ X, Ya € (0,1),

z>y—> az+(l—a)z > ay+(l—a)=z

Representation Theorem 52 ([28]) Let % be a utility
function, then we have the following preference relation
on X; for every T, T’ € X,

z> 7 o U(z)=U(z")
where U is defined as U(x) = (C) [ u(z(s))du(s)

(Choquet integral with respect to &).

Finally, we discuss a fuzzy number-valued utility
function as in the following:

u: 2—F(R")

We note that [11]'\ is an interval number-valued utility
function for all A € [0,1]. Then by Theorem 25, we
have the Choquet expected fuzzy number-valued utility
function U as in the following:

[0P(=) = (©) [ 151N ()) du(s)
=[O 1lie(eNdn (), (©)f (@] *(=(s)du ()]
and

U(z) = () [ d(a(s))duls).

Therefore, we can obtain the following theorem for fuzzy
number-valued utility functions:

Representation Theorem 5.3({28]) Let % be a fuzzy

number-valued utility function, then we have the

following preference relation on X; for every =, ¢’ € X,

> o U(z) 2 T(@)

where U is defined as U (z) = (0>/S @ (z(s))du(s)

Remark 54 If § is a finite set S={s;, -~
we have the Choquet expected fuzzy number-valued

s Sn }, then

utility function as in the following:

n

17(1') = 2 * [11(1'(3(:'))) - ﬁ(z(s(,-_,)))]u (Aw)

= 3"l () = (g )L

where E* is a fuzzy sum operation of fuzzy

A(")z {(7'); v r(n)} for all
’i=1,2, cen—1 and A(n+1)= [

numbers and

Example 55 Let a fuzzy number A= (g,b c) be
defined by

o
=

Then we consider the following operations;

for two fuzzy numbers A = (a,b, ¢), B=(a' ¥, ¢'),
AC Beoa<ad,bsb,c<
A®B=(a+a' b+ ¥, c+¢),
ASB=(a—a'b—V,c—'),
AOA =(Aa, Ab, Ace).

And we consider a fuzzy measure p defined by

p(A)=[#A)N
where #(A) is the number of elements of A. Now we

consider a decision problem involving 4 cars, evaluated
on 3 criteda as shown in Table 1: price, consumption



and comfort.

Table 1 (81 ten million won, s km/l)

price(51) | consumption(s,) | comfort(s;)

Carl (z) 1 10 Very Good
Car2 (y) 1 12 Good

Car3 (z) 3 8 Very Good
Card (w) 3 10 Good

In

this case, suppose that we have the following fuzzy
number-valued utility function ;

u(z(s)) = (08,1, 1.2) = u(z(gs)))
u(z(%))=(0.7,0.9,1.1) = u(z(50))
u(z(s)) = (0.5,0.7,0.9) = u(z(sy)))
(y(s1)) = (0-8,1,1.2) = u(y(s)))
(y(2))=(1,1.2,1.4) = u(y(xs))
u(y(s)) =(0.9,1.1,1.3 ) = u(y(sy))
u(z(s)) = (0.9,1.1,1.3) = u(z(s5y))
u(2(5)) = (0.8,1,1.2) = u(2(s)))
u(z(s)) = (1,12, 1.4) = u(z(ss))
u(w(s)) =(0.7,0.9,1.1) = u(w(sy)))
u(uw(s)) =(0.8,1,1.2) =u(uw(sy))
u(w(s)) =(0.5,0.7,0.8) = u(w(s,))),
where ( - ) indicates a permutation on {1,2,3}

such that S1) < S@) < §3).

u
u

Then we can calculate the Choquet expected fuzzy
number-valued utility function as in the following:
U(z) = @, u(@(50)) 1 (An) —p(Aem )]
=5©(05,0.7,09)®3(0.7,09,1.1)
®10(0.8,1,1.2)
=(5.4,7.2,9.0),
and similarly we have
U(y) =(7.7,9.5,11.3),
U(z) =(7.7,9.5,11),
U(w)=(54,72,85).
Thus we can think that the consumer{decision maker)
has the following preferences :
U(z) = U(y) <2<y and
Uw)c U(z) »w< 2
That is, we can think that if price increases, so does the

important of comfort and that it is more useful tool
whenever some utility function is not clear. Furthermore,

Example 55 is a decision problem for intertemporal
preferences under an uncertain utility function.
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