A Hybrid Evolution Strategy on the Rectilinear Steiner Tree

Byounghak Yang¹

¹ Industrial Engineering, Kyungwon University, Bockjung-dong San 65, Sujung-gu, Seongnam-si, Kyunggi-do, Korea

<u>byang@kyungwon.ac.kr</u>

http://mhl.kyungwon.ac.kr

Abstract. The rectilinear Steiner tree problem (RSTP) is to find a minimum-length rectilinear interconnection of a set of terminals in the plane. It is well known that the solution to this problem will be the minimal spanning tree (MST) on some set Steiner points. The RSTP is known to be NP-complete. The RSTP has received a lot of attention in the literature and heuristic and optimal algorithms have been proposed. A key performance measure of the algorithm for the RSTP is the reduction rate that is achieved by the difference between the objective value of the RSTP and that of the MST without Steiner points. A hybrid evolution strategy on RSTP based upon the Prim algorithm was presented. The computational results show that the evolution strategy is better than the previously proposed other heuristic. The average reduction rate of solutions from the evolution strategy is about 11%, which is almost similar to that of optimal solutions.

1 Introduction

Given a set V of n terminals in the plane, the rectilinear Steiner tree problem(RSTP) in the plane is to find a shortest network, a Steiner minimum tree, interconnecting S. The points in S are called Steiner points. We should find the optimal number of Steiner points and their location on rectilinear plane. It is well-known that the solution to RSTP will be the minimal spanning tree (MST) on some set of points $V \cup S$.

Fig. 1 The minimal spanning tree and Steiner tree

The RSTP is known to be NP-complete [7]. Polynomial-time algorithm for the optimal solution is unlikely to be known [6]. Lee, Bose and Hwang [10] presented algorithm similar to the Prim algorithm for the Minimum Spanning tree. Smith and Liebman [12] and Smith, Lee and Liebman [11] presented heuristic algorithms for the RSTP.

Let MST(V) be the cost of MST on set of terminals V. Then the reduction rate $R(V) = \{MST(V \cup S) - MST(V)\} / MST(V)$ is used as performance measure for algorithms on the Steiner tree problem. Beasley [4] surveyed heuristic for RSTP and introduced his own heuristic. In his research, Beasley's heuristic gave the best reduction rate as about 10%. The Genetic algorithm for Euclidean Steiner tree problem was presented by Hesser et and Barreiros [2,9]. They did not introduce algorithm for RSTP. Warme. Winter and Zachariasen [14] presented exact algorithm for RSTP and showed the average reduction rate is about 11% for the optimal solution. Main motivation of this research is to develop an evolution strategy to meet the reduction rate to 11%.

Hanan showed that for any instance, an optimal rectilinear Steiner tree (RST)

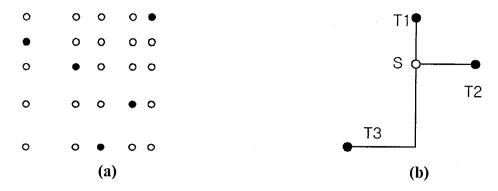


Fig.2 Hanan's grid graph and Steiner point for 3 Terminals

exists in which every Steiner point lies at the intersection of two orthogonal lines contain terminals [8]. Hanan's theorem implies that a graph G called the Hanan grid graph is guaranteed to contain an optimal RST. Hanan's grid graph is constructed as follows: draw a horizontal and vertical line through each terminal. The vertices in graph correspond to the intersections of the lines. In Fig. 2.(a), the black dots are the terminals and white dots are the intersection of two lines. The optimal Steiner point should be white dots in Hanan's gird.

For 3 terminals RST problem, we can get the optimal Steiner point easily. Let (x_i, y_i) be the coordinates of the given terminal Ti; France [5] proved that the Steiner point S is located at (x_m, y_m) , where x_m and y_m are the medians of $\{x_i\}$ and $\{y_i\}$, as like Fig. 2.(b).

2 Evolution Strategy

Evolutionary strategy are based on models of organic evolution. They model the collective the collective learning process within a population of individuals. The starting population is initialized bv randomization or some heuristic method. and evolves toward successively better regions of search space by means of randomized process of recombination. mutation and selection. Each individual is evaluated as the fitness value, and the selection process favors those individuals of higher quality to reproduce more often than worse individuals. The recombination

mechanism allows for mixing of parental information while passing it to their dependents. and mutation introduces innovation into the population. Although simplistic from a biologist's viewpoint. these algorithms are sufficiently complex to provide robust and powerful adaptive search mechanisms [1]. In this research. some Steiner points in Hanan's grid may become an individual, and the individual is evaluated by minimum spanning tree with terminals and Steiner points in individual.

2.1 Individual and evaluation

By the Hanan's theorem, the optimal Steiner points should be on the Hanan's grid. An individual are introduced as represented the location of Steiner point on Hanan's grid. Each vertical line and horizontal line is named as increasing number. Most left vertical line is the first vertical line, and most bottom horizontal line is the first horizontal line. Each individual has multiple (v_i, h_i) which is the location of the i-th Steiner point Si on Hanan's grid, which v_i is the index of vertical line on Steiner point S_i and h_i is the index of horizontal line on Steiner point S_i . And (x_i, y_i) is the real location on plane for Steiner point Si, and is calculated from (v_i, h_i) . In this research, individual is an assembly of the number of Steiner points and the locations of Steiner points as follows; $\{m, (v_1, h_1),$ (v_2,h_2) , , (v_m,h_m) } where m is the number of Steiner points.

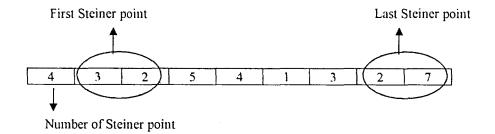


Fig. 3 Individual for Steiner tree problem

Each individual has different length depending on its number of Steiner points, and represents one Steiner Tree. The fitness of the individual corresponds to the weight of the MST than can be constructed by using the original terminals and the Steiner points in individual by Prim algorithm.

2.2 Recombination

Fig. 4 Crossover operator

The recombination or crossover operator exchanges a part of an individual between two individual. We choose some Steiner points in each individual and exchange with other Steiner points in the other individual. We have two parents to crossover as P1={3, (1,3), (2,4), (3,2)} and P2{2, (6,4), (7,8)}. By the random number, we choose the number of exchanging which is less than the number of Steiner points in both parents. Then by the random number, some Steiner points are choose and exchanged.

Steiner point. Then we can have new location $(v_i, +v_i, h_i + h)$ where v and h are some random integer number.

points are selected in P2. Therefore we

crossover as follows: $O1=\{3, (6,4), (2,4),$

operator

locations of some selected Steiner points. Let (v_i, h_i) be the selected location of

by

performing

changes

children

two

mutation

2.3 Mutation

The

(7,8)} and $O2\{2, (1,3), (3,2)\}.$

2.4 Selection

We use the tournament selection. The k-tournament selection method select a single individual by choosing some number k of individuals randomly from the population and selecting the best individual

Fig. 5 Mutation Operator In this case, we choose the 2 as exchanging number. First and third Steiner points are selected in P1, and two Steiner

from this group to survive to the next generation. The process is repeated as often as necessary to fill the new population. A common tournament size is k=2.

2.5 Initial population

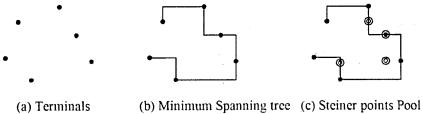


Fig. 6 A Steiner pool from minimum spanning tree for given terminals

For the 3-terminal RST problem, the median of terminals is the optimal Steiner point. We assume that each median point of every adjacent 3-terminal has high probability to be survived in the optimal Steiner tree. For the convenience to find adjacent 3-terminal, we make a minimum spanning tree for the V and find every directly connected 3 terminals in the minimum spanning tree as like Fig. 6(b). And a Steiner point for these connected 3 terminals is calculated. We make the Steiner point for every connected 3 terminals in minimum spanning tree, and put in the Steiner points pool as like Fig. 6(c) and use one of candidate Steiner point. We make initial population for the evolution strategy as following procedure:

Step 1: Make a minimum spanning tree (MST) for the terminals.

Step 2: Choose every connected three terminals in MST. Let them be 3-neighbor terminals (3NT).

Step 3: Make a Steiner point for each 3NT and add it in the Steiner points pool.

Step 4: Choose some Steiner points from Steiner points pool by random function and make one individual. Repeat Step 4 until all individuals are decided.

We make an initial population with 200 individuals.

strategy, the local search can be used. In this research, an insertion operator, a

For searching new solution in evolution

2.6 Hybrid operator

deletion operator and a moving operator Mutation operator and introduced. crossover have the location of Steiner point moved to search a solution, but they don't search new Steiner point. We need introduce a new Steiner point in current individual to enforce the variability the solution. For some selected individual. randomly generated Steiner point in Hanan's grid is inserted individual and increase the number of Steiner point as an insertion operator. On the other hand, some Steiner points in tree are connected with only one or two other node. Those kinds of Steiner point in tree are obviously useless to reduce the tree cost. We introduce deletion operator to delete some Steiner points which are connected less than 2 other node in Steiner tree. For the Steiner point connected with 3 other node, we know the optimal location of Steiner point as using the results of 3-terminal case. We trace the Steiner point (S) which is connected with exactly 3 other node(A,B,C) and calculate the optimal location(S*) of Steiner point for those 3 node(A.B.C) and move the location of S to S* as a moving operator.

3 Computational Experience

The computational study was made on Pentium IV processor. The evolution strategy was programmed in Visual Studio. Problem instances are from OR-Library

[2], 15 instances for each problem size 10, 20,....., 100,250,500. By our parameter setting, the crossover rate was 0.09, the mutation rate was 0.01 and the insertion rate was 0.31. The population size was 200. Each test problem was solved our evolution strategy. The results are shown in Table 1. In Table 1, for each value of the minimum. the average, maximum for the reduction rate and the number of Steiner points. For the RST Beasley has solved The instances as our ones. other research's results are from the survey of Beasley's research [3]. Those results are Table2. In Table2, the evolution strategy introduced in this paper gives larger percentage reduction (about 11%) in most instances than any other heuristic.

In order to compare the evolution strategy with optimal solutions, the 46 test problem were solved by the evolution strategy. The 46 test problems were given by Soukup and Chow [13]. Warme solved all of this problem and showed the optimal solutions. Table 3 shows the Steiner tree cost of optimal solutions, and those of the evolution strategy. In Table 3, the evolution strategy found optimal solution in 44 instances among 46 instances. Finally, we show computational results of each OR-library instance solved by evolutional strategy. In table 4 through 6, STP is the value of the Steiner tree by our evolutional strategy, MST is the value of the minimal spanning tree, Red is the reduction value, OPT is the value of the optimal Steiner tree from Warme[15] and %gap is 100 (STP-OPT) / OPT. Zero %gap means the evolutionary strategy finds the optimal solution. In small size problem, the rate of finding the optimal solution is quite high. But the rate of finding the optimal solution decreases while the problem size increases. The worst case of %gap is 1.5%, therefore our solution is in 98.5% of the optimal solution.

4 Conclusion

In this paper we have introduced an evolution strategy for rectilinear Steiner tree problem. Computational results showed that this evolution strategy gives better Steiner tree solution than the other

heuristic. For the optimal case problems, our evolution strategy found 44 optimal solutions among 46 instances. And the gab between the values of optimal solution and that of evolutionary strategy is less than 1.5%. Our evolution strategy should solve the minimum spanning tree problems for the all individual at every iteration, therefore the calculation time of evolution strategy is much bigger than that of the other heuristic algorithm. We are trying to modify our methods to reduce the calculation time.

Table 1 Summary of the Computational results

n	Reduction Rate			Number of Steiner points		
	min	average	max	min	average	max
10	4.377	10.611	19.299	2	3.933	6
20	7.462	11.721	14.734	7	9.067	12
30	8.496	11.356	16.542	12	13.867	16
40	8.367	10.807	13.884	15	18.533	22
50	8.628	10.705	12.457	19	22.933	27
60	9.292	11.755	13.940	24	27.933	31
70	9.733	11.163	12.775	29	32.133	34
80	8.957	11.081	13.212	34	37.467	41
90	9.453	11.203	13.000	37	40.600	45
100	9.777	11.501	13.478	41	45.400	51
250	10.016	11.090	11.845	102	111.133	117
500	10.231	10.811	12.054	209	217.000	230

Table 2. The comparison for reduction rate with Beasley's solution and the optimal solution for OR-LIB problems

П	ESª	Beasley[3]	optimal solution[15]
10	10.611	9.947	10.656
20	11.721	10.59	11.798
30	11,356	10.25	11.552
40	10.807	9.956	10.912
50	10.705	9.522	10.867
60	11.755	10.146	11.861
70	11.163	9.779	11.387
80	11.081	9.831	11.3
90	11.203	10.128	11.457
100	11.501	10.139	11.720
250	11.090	9.964	11.646
500	10.811	9.879	11.631

a: Evolution Strategy

Table 3. The comparison for tree value in the Soukup and Chow problems

* : The evolution strategy failed to find the optimal solution.

Instances	<u>n</u>	Evolution Strategy	
1	5	1.87	1.87
2	6	1.64	1.64
3	7	2.36	2,36
4	8	2.54	2.54
5	6	2.26	2.26
6	12	2.42	2.42
7	12	2.48	2.48
8	12	2.36	2.36
9	7	1.64	1.64
10	6	1.77	1.77
11	6	1.44	1.44
12	9	1.8	1.8
13	9	1.5	1.5
14	12	2.6	2.6
15	14	1.48	1.48
16	3	1.40	1.6
17	10	2	2
18	62	4.04	4.04
19	14	1.88	1.88
20	3	1.12	1.12
21	5	1.92	1.92
22	4	0.63	0.63
23	4	0.65	0.65
24	4	0.3	0.3
25	3_	0.23	0.23
26	3	0.15	0.15
27	4	1.33	1.33
28	4	0.24	0.24
29	3	2	2
30	12	1.1	1.1
31	14	2.59	2.59
32	19	3.13	3.13
33	18	2.68	2.68
34	19	2.43	2.41
35	18	1.51	1.51
36	4	0.9	0.9
37	8	0.9	0.9
38	14	1.66	1.66
39	$\frac{14}{14}$	1.66	1.66
40	10	1.55	1.55
41	20	2.24	2.24
42	15	1.53	1.53
43	16	2.57*	2.55
44	$\frac{10}{17}$	2.54*	2.52
45	$-\frac{17}{19}$	2.54*	
			2.2
46	16	1.5	1.5

Table 4. Results for OR-library problems 10-40

n	STP	MST	Red	Opt	%gap
10	2.301969	2.501884	7.990575	2.292075	0.431683
10	1.913410	2.072885	7,693342	1.913410	0.000000
10	2.600368	2.908126	10.582701	2.600368	0.000000
10	2.050677	2.210872	7.245784	2.046112	0.223121
10	1.881892	2.085090	9.745302	1.881892	0.000000
10	2.654077	3.130105	15.208053	2.654077	0.000000
10	2.602507	2.845864	8.551251	2.602507	0.000000
10	2.505621	2.824229	11.281221	2.505621	0.000000
10	2.207882	2.308941	4.376868	2.206236	0.074625
10	2.393610	2.635232	9.168931	2.393610	0.000000
10	2.223954	2.691523	17.371921	2.223954	0.000000
10	1.962632	2.144338	8.473750	1.962632	0.000000
10	1.948391	2.257994	13.711397	1.948391	0.000000
10	2.185613	2.708285	19.299010	2.185613	0.000000
	1.864192	2.036604	8.465651	1.864192	0.000000
10		3.844161	12.119174	3.370389	0.234163
20	3.378281	3.676536	11.222166	3.263949	0.000000
20	3.263949	3.074551	9.426057	2.784742	0.000000
20	2.784742		14.636512	2.762439	0.000000
20	2.762439	3.236090			0.021041
20	3.404032	3.992245	14.733880	3.403316 3.601424	0.000000
20	3.601424	4.140105			0.000000
20	3.493487	3.897788	10.372574	3.493487	
20	3.801635	4.333770	12.278808	3.801635	0.000000
20	3.673994	4.223400	13.008625	3.673994	0.000000
20	3.402474	3.913073	13.048547	3.402474	0.000000
20	2.712681	2.931421	7.461901	2.712391	0.010692
20	3.045140	3.526389	13.647082	3.045140	0.000000
20	3.452218	3.809804	9.385927	3.443867	0.242489
20	3.406237	3.850494	11.537657	3.406237	0.000000
20	3.255649	3.614454	9.926951	3.230375	0.782405
30	4.102876	4.586079	10.536310	4.069299	0.825110
30	4.090006	4.565851	10.421829	4.090006	0.000000
30	4.318269	4.815896	10.333002	4.312044	0.144351
30	4.216786	4.802889	12.203140	4.215096	0.040094
30	4.173975	4.652218	10.279887	4.173975	0.000000
30	3.998215	4.540988	11.952758	3.995514	0.067596
30	4.433955	4.960538	10.615439	4.376139	1.321171
30	4.172371	4.559787	8.496356	4.169122	0.077940
30	3.713366	4.153980	10.607037	3.713366	0.000000
30	4.268661	4.900239	12.888711	4.268661	0.000000
30	4.185465	4.625424	9.511755	4.164799	0.496194
30	3.841672	4.309165	10.848811	3.841672	0.000000
30	3.740665	4.284652	12.696192	3.740665	0.000000
30	4.294111	5.145219	16.541723	4.289703	0.102779
30	4.314373	4.925398	12.405610	4.303558	0.251304
40	4.517278	4.988419	9.444698	4.484152	0.738731
40	4.681131	5.278928	11.324214	4.681131	0.000000
40	4.997416	5.628845	11.217737	4.997416	0.000000
40	4.528986	4.942542	8.367273	4.528986	0.000000
40	5.194466	5.785622	10.217663	5.194041	0.008184
40	4.976504	5.618419	11.425179	4.975339	0.023432
40	4.568207	5.119388	10.766540	4.563901	0.094343
40	4.874600	5.349185	8.872100	4.874600	0.000000
40	5.176179	6.010718	13.884180	5.176179	0.000000
40	5.713685	6.438572	11.258508	5.713685	0.000000
40	4.692986	5.233565	10.329065	4.673421	0.418642
	4.384338	4.809879	8.847225	4.384338	0.000000
40		5.850367	10.876088	5.188455	0.493818
40	5.214076	5.580131	11.889248	4.916695	0.000000
40	4.916695			5.082807	0.000000
40	5.082807	5.868208	13.384004	10.002001	10.00000

Table 5. Results for OR-library problems 50-80

n	STP	MST	Red	Opt	%gap
50	5.508544	6.292395	12.457112	5.494866	0.248929
50	5.548425	6.212306	10.686561	5.548425	0.000000
50	5.476689	6.221504	11.971612	5.469104	0.138703
50	5.161548	5.800274	11.011987	5.153577	0.154685
50	5.518602	6.039675	8.627501	5.518602	0.000000
50	5.593741	6.322031	11.519873	5.580429	0.238553
50	5.000242	5.692668	12.163472	4.996118	0.082538
50	5.375471	5.976837	10.061619	5.375471	0.000000
50	5.381767	5.993608	10.208221	5.345677	0.675116
50	5.421111	6.012603	9.837544	5.403796	0.320412
50	5.253292	5.910225	11,115191	5.253292	0.000000
50	5.363311	5.887089	8.897069	5,340929	0.419062
50	5,392747	6.016392	10.365761	5.389102	0.067642
50	5.370040	6.011994	10.677884	5.355142	0.278204
50	5.223717	5.867421	10.970823	5.218086	0.107907
60	5.384679	6.140916	12.314733	5.376142	0.158781
60	5.536780	6.226545	11.077811	5.536780	0.000000
60	5.667230	6.472112	12.436158	5.656680	0.186509
60	5.537723	6.289463	11.952373	5.537104	0.011179
60	5.470499	6.203574	11.816977	5.470499	0.000000
60	6.049538	6.784063	10.827204	6.042196	0.000000
60	5.926492	6.800563	12.852917	5.897804	0.121515
60	5.813818	6.620793	12.188503	5.813818	0.000000
60	5.597639	6.328406	11.547410	5.587711	0.177676
60	5.769777	6.391773	9.731191	5.762449	
60	5.631777	6.208662		5.614167	0.127173
60	5,993593	6,964434	9.291612		0.313683
60	6.121353		13.939994	5.979136	0.241779
60		6.872804	10.933686	6.121353	0.000000
60	5.603553	6.417035	12.676917	5.603553	0.000000
70	5.662258	6.488738	12.737147	5.662258	0.000000
	6.216743	6.986094	11.012599	6.205886	0.174945
70	6.105044	6.875814	11.209876	6.092849	0.200148
70	6.205756	6.990516	11.226071	6.193466	0.198424
70	6.306707	6.991941	9.800340	6.293858	0.204148
70	6.225699	6.913773	9.952213	6.225699	0.000000
70	6.212561	7.122416	12.774533	6.212453	0.001737
70	6.254855	7.043327	11.194592	6.222367	0.522120
70	6.198887	7.020859	11.707573	6.187285	0.187515
70	6.339620	7.077673	10.427903	6.298613	0.651040
70	6.255041	7.025816	10.970614	6.251183	0.061718
70	6.645576	7.516908	11.591630	6.645576	0.000000
70	6.319954	7.181375	11.995205	6.304713	0.241743
70	6.353336	7.038404	9.733296	6.291226	0.987246
70	6.043727	6.828391	11.491198	6.041112	0.043282
70	6.250955	7.132336	12.357542	6.231846	0.306630
80	7.104259	8.002857	11.228458	7.092744	0.162348
80	6.532461	7.434127	12.128740	6.527381	0.077824
80	6.543591	7.432810	11.963429	6.533255	0.158212
80	6.440664	7.176152	10.249065	6.419345	0.332109
80	6.636066	7.585674	12.518437	6.635053	0.015267
80	7.112493	7.871256	9.639677	7.100744	0.165452
80	6.839466	7.880621	13.211591	6.822848	0.243567
80	6.820746	7.690611	11.310744	6.745238	1.119425
80	6.983243	8.040083	13.144638	6.982565	0.009707
30	6.559871	7.290314	10.019368	6.549799	0.153774
30	6.652729	7.307250	8.957145	6.628310	0.368405
30	6.517687	7.171462	9.116339	6.507009	0.164108
30	6.815223	7.656879	10.992144	6.802265	0.190506
30	7.041204	7.904100	10.917071	7.007790	0.476809
		1	10.01.011	11.00.100	10.410003

Table 6. Results for OR-library problems 90-500

n	STP	MST	Red	Opt	%gap
90	6.842857	7.717188	11.329668	6.835036	0.114422
90	7.129485	8.006525	10.954075	7.129485	0.000000
90	7.520222	8.395115	10.421461	7.481747	0.514242
90	7.128021	7.872189	9.453135	7.091006	0.521989
90	7.192045	8.171431	11.985483	7.183122	0.124218
90	6.870718	7.760545	11.466032	6.864035	0.097371
90	7.212608	8.120775	11.183251	7.203689	0.123819
90	7.300638	8.197037	10.935638	7.234167	0.918855
90	6.785945	7.799959	13.000248	6.785601	0.005071
90	7.247792	8.279729	12.463420	7.231041	0.231650
90	7.232231	8.124839	10.986163	7.231004	0.016967
90	6.964982	7.931811	12.189265	6.936726	0.407342
90	7.320608	8.125796	9.909033	7.281066	0.543078
90	6.952070	7.749269	10.287415	6.918899	0.479419
90	7.191411	8.124766	11.487780	7.177829	0.189215
100	7.289523	8.251678	11.660119	7.252217	0.514414
100	7.549567	8.586721	12.078585	7.517663	0.424382
100	7.274682	8.232048	11.629745	7.274601	0.001113
100	7.442618	8.334606	10.702228	7.434239	0.112702
100	7.576702	8.427539	10.095911	7.567020	0.127953
100	7.474154	8.542745	12.508752	7.441499	0.438823
100	7.782745	8.903611	12.588894	7.774058	0.111742
100	7.315364	8.231337	11.127880	7.303318	0.164936
100	7.802998	9.018468	13.477568	7.795203	0.099995
100	7.603212	8.572570	11.307670	7.595220	0.105216
100	7.884077	8.738441	9.777071	7.867486	0.210887
100	7.626623	8.699562	12.333253	7.613110	0.177494
100	7.496535	8.503628	11.843095	7.460499	0.483028
100	7.888076	8.798508	10.347570	7.863280	0.315347
100	7.076385	7.953732	11.030638	7.044649	0.450489
250	11.759209	13.082227	10.113098	11.660981	0.842359
250	11.576572	13.034454	11.184830	11.515008	0.534646
250	11.519080	12.915711	10.813422	11.465040	0.471349
250	11.871394	13.290703	10.678958	11.781953	0.759136
250	11.770383	13.287220	11.415757	11.692709	0.664299
250	11.649603	13.000556	10.391499	11.625625	0.206250
250	11.603117	12.894627	10.015877	11.527735	0.653919
250	11.798068	13.383269	11.844648	11.683332	0.982047
250	11.737671	13.251040	11.420762	11.682199	0.474840
250	11.787857	13.356546	11.744722	11.685763	0.873662
250	11.357994	12.833252	11.495593	11.288961	0.611502
250	11.952655	13.436222	11.041549	11.903526	0.412728
250	11.670725	13.200288	11.587350	11.604950	0.566783
250	11.686791	13,165300	11.230345	11.618879	0.584498
250	11.649770	13.144921	11.374367	11.555820	0.813009
500	16.469137	18.419000	10.586151	16.297881	1.050784
500	16.213260	18.435407	12.053688	16.075685	0.855796
500	16.445173	18.568322	11.434250	16.266466	1.098623
500	16.546545	18.494398	10.532125	16.411100	0.825326
500	16.172066	18.060572	10.456512	16.058616	0.706473
500	16.638710	18.648836	10.778828	16.468507	1.033503
500	16.176323	18.142319	10.836520	16.012423	1.023578
500	16.283130	18.221092	10.635817	16.124814	0.981817
500	16.310447	18.245223	10.604291	16.210044	0.619389
500	15.684610	17.586729	10.815646	15.558120	0.813015
500	16.301537	18.302882	10.934590	16.167432	0.829479
500	16.582771	18.472623	10.230557	16.400959	1.108541
500	16.278519	18.261219	10.857437	16.132420	0.905622
500	16.795443	18.865160	10.971108	16.598433	1.186920
500	16.217036	18.107129	10.438394	16.075847	0.878267

References

- Back, Thomas: Evolutionary Algorithm in Theory and Practice, Oxford University Press (1996)
- 2. Barreiros, Jorge: An Hierarchic Genetic Algorithm for Computing (near) Optimal Euclidean Steiner Trees, Workshop on Application of hybrid Evolutionary Algorithms to NP-Complete Problems, Chicago, 2003
- Beasley, J. E.: OR-Library: distributing test problems by electronic mail. *Journal of the Operational Research Society* 41 (1990) 1069-1072
- Beasley, J. E: A heuristic for Euclidean and rectilinear Steiner problems. European Journal of Operational Research 58 (1992) 284-292
- 5. France, R. L.: A note on the optimum location of new machines in existing plant layouts, *J. Industrial Engineering* 14(1963) 57-59
- 6. Ganley, Joseph L.: Computing optimal rectilinear Steiner trees: A survey and experimental evaluation. *Discrete Applied Mathematics* 90 (1999) 161-171
- Garey, M. R., Johnson, D. S.: The rectilinear Steiner tree problem is NP-complete. SIAM Journal on Applied Mathematics 32(1977a) 826-834
- 8. Hanan, M.: On Steiner's problem with rectilinear distance. *SLAM Journal on Applied Mathematics* 14. (1966) 255-265
- 9. Hesser, J., Manner R., Stucky, O.: Optimization of Steiner Trees using Genetic Algorithms, *Proceedings of the Third International Conference on Genetic Algorithm* (1989) 231-236
- 10. Lee, J. L., Bose, N. K., Hwang, F. K.:
 Use of Steiner's problem in suboptimal routing in rectilinear metric. *IEEE Transaction son Circuits and Systems* 23(1976) 470-476
- Smith, J. M., Lee. D. T., Liebman, J. S.: An O(n log n) heuristic algorithm for the rectilinear Steiner minimal tree problem. Engineering Optimization 4 (1980) 172-192

- Smith, J. M., Liebman, J. S.: Steiner trees, Steiner circuits and the interface problem in building design. *Engineering* Optimization 2(1979)15-36
- Soukup, J., Chow, W. F.:Set of test problems for the minimum length connection networks. ACM/SIGMAP Newsletter 15(1973) 48-51
- Warme, D. M, Winter, P., Zachariasen,
 M. Exact Algorithms for Plane Steiner
 Tree Problems : A Computational Study In:
 D. Z. Du, J. M. Smith and J. H. Rubinstein
 (eds.): Advances in Steiner Tree, Kluser
 Academic Publishers (1998)
- 15. Warme, D. M: A New Exact Algorithms for Rectilinear Steiner Minimal Trees. Technical report, System Simulation Solution, Inc., Alexandria, Va 22314, USA, 1997.