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Abstract

In this paper, we review the variable-selection properties of LASSO and SCAD in
penalized regression. To improve the weakness of SCAD for high noise level, we propose
a new penalty function called MSCAD which relaxes the unbiasedness condition of
SCAD. In order to compare MSCAD with LASSO and SCAD, comparative studies
are performed on simulated datasets and also on a real dataset. The performances
of penalized regression methods are compared in terms of relative model error and
the estimates of coefficients. The results of experiments show that the performance of
MSCAD is between those of LASSO and SCAD as expected.
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1 Introduction

Variable selection is an important topic in linear regression analysis. By retaining a subset of
the predictors and discarding the rest (for example, stepwise forward selection or backward
elimination), the reduced regression model is more interpretable and sometimes reduces the
prediction error.

Although subset selection methods are practically useful, they have several drawbacks.
The most severe drawback is their lack of stability. Since the variables are either retained or
discarded, subset selection methods often show high variance and don’t reduce the prediction
error of the full model. Shrinkage methods are useful to overcome these difficulties, since
they don’t suffer as much from high variability (Hastie et al. 2001, Chapter 3).

This paper consists of three main parts: reviews on penalized regression, proposed
method, and summary and concluding remarks. In Section 2, we introduce penalized re-
gression. We review some well-known penalized regression methods such as LASSO and
SCAD methods. We describe proposed penalty functions which are motivated to satisfy
both advantages of LASSO and SCAD in Section 3. The behaviors of proposed methods
are between LASSO and SCAD. We expect that the performance of proposed method is
more steady than those of LASSO and SCAD. Finally, summary and concluding remarks
are provided in Section 4.
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2 Penalized Regression
2.1 Ridge Regression

Consider the linear regression model
y=XB+e

where y is an n X 1 vector and X is an n x p matrix. When we use the squared-error loss
criteria to solve the linear regression problem, the collinearity in the design matrix X causes
unstable solutions. To remedy this problems, ridge regression technique imposes a penalty
on the size of regression coefficients. That is, the ridge regression shrinks the regression
coefficients by minimizing the penalized residual sum of squares,

n p Ld
gridee — grg min { D wi— Y zib) + ’\Zﬁ?}'
j=1

i=1 J=1

Here )\ > 0 is a regularization (complexity) parameter that controls the amount of shrinkage:
the larger the value of ), the greater the amount of shrinkage.

2.2 The LASSO

The LASSO (Least Absolute Shrinkage and Selection Operator) was proposed by Tibshirani
(1996). The LASSO is a shrinkage method like ridge, using L; penalty instead of Lo penalty
in ridge. Thus the lasso estimator is defined by

n P P
oo = argmin { 3 (s = D m + 3L 10 |
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Because of the L penalty the solution is not linear in y, and usually quadratic programming
methods are used to solve the LASSO estimate. As the regularization parameter A increases,
some of the coefficients tend to be exactly zero.

2.3 The SCAD

Fan and Li (2001) proposed a variable selection method based on SCAD (Smoothly Clipped
Absolute Deviation) penalty function. As a motivation for the SCAD penalty they claimed
that a good penalty function should result in an estimator with the following three properties:

e Unbiasedness : The resulting estimator is nearly unbiased when the true unknown
parameter is large to avoid unnecessary modelling bias.

o Sparsity : The resulting estimator is a thresholding rule, which automatically sets
small estimated coefficients to zero to reduce model complexity.

o Continuity : The resulting estimator is continuous in data to avoid instability in model
prediction.

Fan and Li (2001) provided some insights on the three requirements to be a good penalty
function. For the unbiasedness condition, p}(|6]) = 0 for large |6] is a sufficient condition for
unbiasedness for a large parameter. A sufficient condition for the resulting estimator to be a
thresholding rule is that the minimum of the function |0|+p(|6]) is positive. A sufficient and



Young Joo Yoon, Moon Sup Song

necessary condition for continuity is that minimum of the function |0] + p\([6]) is attained
at 0 (see Fan and Li, 2001). In the case of LASSO, the L, penalty does not satisfy the
sufficient condition for unbiasedness for large parameters, and for ridge, the L, penalty does
not satisfy the conditions for sparse solutions and unbiasedness for large parameters. To
satisfy the conditions for unbiasedness, sparsity and continuity, Fan and Li (2001) proposed
the SCAD penalty function defined by

16| , 0081 <A
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for some a > 2. The derivative of the SCAD function is given by

(ar —0)+

a=DA I(0>)\)} for some a > 2 and 6 > 0.

pa(6) = A{I(G <A+

3 Proposed Method

In Section 2 we considered the penalized least squares methods based on LASSO and SCAD.
These methods can be applied to variable selection problem, since both algorithms give
sparse solutions as the regularization parameter increases. In this section we compare the
performance of LASSO and SCAD on a toy example and propose a new- penalty function
whose behavior is expected to be between LASSO and SCAD.

3.1 Motivation

Consider the following toy example:
y =27 B + o,

where 8 = (3,1.5,1,1,2,0,0,0)T and the components of z and e are standard normal. The
correlation between z; and z; is p'*~7! with p = 0.5. The number of observations is n = 40,
and o0 = 0.5 and 3. In this toy example, the number of variables is large relative to that of
observations, so variable selection procedures may be useful. Monte Carlo simulations with
iteration M = 100 are performed to compare LASSO and SCAD. The value of @ in SCAD is
set to 3.7, which is the value suggested by Fan and Li (2001). The regularization parameters
are estimated by using validation set. To compare the performance of methods, the RME
(relative model error) is used, which is the ratio of model errors of the given method to those
of the least squares method. Model error is defined as follows:

ME(f) = E(j(r) - u(2))?,

where u(z) = 278, fi(r) = zT4. Estimated model error is given by

N 1 n
ME(j4) = — zT 8 - z7B)?,
(#) n zeteg; set( )
where nr is the size of test set, z’s are the test examples. In this example, ny = 500.

The average and median of RME (in %) are summarized in Table 1. While the perfor-
mance of SCAD is better than that of LASSO for small o, the performance of LASSO is
better than that of SCAD for large . These results are similar to the results in Fan and Li
(2001).
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Table 1: Simulation results for the téy example

=05
Method | Avg. of RME(%) Median of RME (%)
LASSO 81.90 77.39
SCAD 65.28 63.14

og=2
Method | Avg. of RME(%) Median of RME (%)
LASSO 80.79 86.11
SCAD 94.12 95.67

3.2 Proposed Penalty

Since the performance of SCAD becomes worse compared to that of LASSO for high noise
level, a modified SCAD penalty function is considered, which relaxes the unbiasedness con-
dition of SCAD. The modified SCAD (called MSCAD) penalty’s derivative is defined as
follows:

p,(9)={,\ ifo<o<A
A U0)PLasso(0) + (1 = 1(0)]Pscap(0) if 6> A ’

where I[(A) = 1, I(f) — 0 as 8 — oo, and {(0) is decreasing. This derivative is a convex
combination of LASSO and SCAD penalty’s derivative. An example of [(6) is as follows:

1

The derivative of SCAD is zero for || > aA and that of MSCAD approaches zero. The
MSCAD estimator is not unbiased but nearly unbiased for large value of |§]. According to
the unified algorithm, which was proposed by Fan and Li (2001), the solution to the penalized
least squares problem can be obtained by iteratively computing the ridge regression

B = {XTX +nZx(Bo)} 1 XTy,

where X, (0o) is the diagonal matrix with diagonal elements depending on S through the
derivative p). Thus for the penalized least squares problem, the differences between LASSO,
SCAD, and MSCAD can be characterized by p}.

As in Table 1, the RME’s of MSCAD method (k = 1/2,1,2) relative to the least squares
method are computed for the toy example. The results are summarized in Table 2. We can
see that for small o, the RME’s of MSCAD are larger than that of SCAD, but smaller than
that of LASSO. For large o, these aspects are conversely showed. The results show that the
performance of MSCAD is between those of LASSO and SCAD as expected. For larger #,
MSCAD is close to SCAD. We expect that the performance of MSCAD is more steady than
those of LASSO and SCAD. In the next section we will compare these methods with a real
data example.

3.3 Real Data Example - Prostate Cancer Data

The data come from a study by Stamey et al. (1989) that examined the correlation between
the level of prostate specific antigen (PSA) and a number of clinical measures in 97 men who
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Table 2: Simulation results for toy example in Section 3.2

=05
Method Avg. of RME(%) Median of RME (%)
MSCAD (k = 1/2) 78.85 77.35
MSCAD (k =1) 74.56 75.01
MSCAD (k = 2) 71.64 67.46
o=2
Method Avg. of RME(%) Median of RME (%)
MSCAD (k = 1/2) 85.19 92.36
MSCAD (k = 1) 89.15 95.87
MSCAD (k = 2) 93.47 97.65

were about to receive a radical prostatectomy. This example was considered in Hastie et al.
(2001, Chapter 3) to compare various variable selection and shrinkage methods. The goal
is to predict the log of PSA (lpsa) from a number of measurements including log-cancer-
volume (lcavol), age, log of benign prostatic hyperplasia amount (Ibph), seminal vesicle
invasion (svi), log of capsular penetration (lcp), Gleason score (gleason), and percent of
Gleason scores 4 or 5 (pgg45). First we standardized the predictors to have unit variance.
Then we performed ordinary least squares method and various variable selection methods
for this dataset. The variable selection methods used in this analysis are the best-subset
selection using an all-subset search (see Hastie et al., 2001), LASSO, SCAD and MSCAD. In
MSCAD, the considered values of k are 1/2,1 and 2. We divided this dataset into training
dataset of size 67 and test dataset of size 30. To select regularization parameter, 10-fold
cross validation method is applied to the training dataset. The test dataset judges the
performance of the selected model. The estimated coefficients (except intercept) and test
errors are showed in Table 3.

The performances of penalized regression methods are better than those of ordinary
least squares and best subset selection methods. Among the penalized methods, SCAD has
the best performance. But the difference is not so much. The performance of MSCAD is
similar to that of SCAD for large &, while MSCAD method for small k& performs similar
to LASSO. These aspects are not so different from those of toy example in the previous
section. The selected variables for three penalized methods are similar (except pgg45).
Especially for lcavol, the estimated coefficients of SCAD and MSCAD are larger than that
of LASSO. For other variables, the latter are larger than the former. This may be caused
by the unbiasedness of SCAD and near unbiasedness of MSCAD for large coefficients, which
LASSO does not satisfy.

4 Summary and Concluding Remarks

The variable-selection properties of LASSO and SCAD in penalized regression are studied
in this paper. While the performance of SCAD is better than that of LASSO for low noise
level, the converse result is true for high noise level. To improve the weakness of SCAD
for high noise level, we proposed the MSCAD (Modified SCAD) penalty function which
relaxes the unbiasedness conditions of SCAD. The results for simulated data and real data
showed that the performance of MSCAD is between LASSO and SCAD as expected. That
is, the performance of MSCAD is more steady than those of LASSO and SCAD. In this
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Table 3: Estimated coefficients and test errors for prostate cancer data

MSCAD

Variable LS Best Subset LASSO SCAD k=1/2 k=1 k=2
Icavol 0.680 0.740 0.544 0.806 0.574 0.610 0.683
Iweight 0.305 0.367 0.199 0.104 0.177 0.168 0.148

age -0.141 - - - - - -
Ibph 0.210 - 0.061 0.028 0.040 0.035 0.026
svi 0.305 - 0.126 0.006 0.093 0.073 0.036

lep -0.288 - - - - - -

gleason -0.021 - - - - - -
peg4b 0.267 - 0.041 - 0.023 0.016 0.005
Test Error 0.586 0.574 0.485 0.472 0.483 0.481 0.479
(0.184)*  (0.156) (0.158) (0.133) (0.155) (0.152) (0.145)

* The values in parentheses indicate standard errors of test error.

paper, we considered only some special cases of MSCAD. It is necessary to study theoretical
properties of general MSCAD, such as the existence of solution, oracle property (see Fan
and Li, 2001) and the behaviors of the estimates. A unified algorithm proposed by Fan and
Li (2001) is used to estimate regression coefficients of SCAD and MSCAD penalty functions.
This algorithm contains a matrix inversion. Thus the stability of the algorithm can not be
guaranteed. In addition, the solution may be a local one since the object function is locally
approximated by quadratic function. To improve these problems of the unified algorithm,
stagewise approaches such as gradient boosting (Friedman, 2001) and margin boost (Mason
et al., 2000) can be considered.
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