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Novel 2D FDTD Scheme with Isotropic Dispersion Characteristics
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Abstract: A two dimensional (2-D) finite-difference time-domain (FDTD) method based on a novel finite difference scheme
is developed to eliminate the numerical dispersion errors. In this paper, numerical dispersion and stability analysis of the new
scheme are given, which show that the proposed method is nearly dispersionless, and stable for a larger time step than the

standard FDTD method.
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1. INTRODUCTION

For past decades finite-difference time-domain (FDTD)
method has been very popular and widely used for a wide
range of applications since it provides many advantages
such as low computational complexity, great flexibility,
easy implementation, etc. However, the standard FDTD
algorithm has suffered from the so-called numerical
dispersion which makes wave propagate at different
velocity dependant on the propagation direction. Since very
small cells should be used to reduce the dispersion error
which will be accumulated with increasing time, the FDTD
scheme may generally be used for electrically small size
problems. To rectify the numerical anisotropic dispersion,
several techniques have been proposed which are based on
higher-order differential scheme, non-standard differential
operator, introduction of an artificial anisotropy, overlapped
lattices, etc. [1]. However, these methods may increase
overall algorithm complexity at expense of reducing the
dispersion.

In this paper, a novel 2D FDTD algorithm is proposed
whose dispersion error can be controlled. The proposed
scheme is based on an observation that the anisotropic
dispersion of the standard FDTD may be caused by not
sufficient spatial samplings to approximate the spatial
derivatives. Hence, in the paper, ficlds are sampled at more
points, 8 different points (4 standard Yee points + 4
additional points) in an isotropic manner, which results in a
weighted sum of two different numerical derivative
schemes to approximate the spatial derivatives (see Figure
1). To use the standard Yee grid, the fields at 4 additional
points are estimated by a linear interpolation of fields in
two adjacent cells. By varying the weighting factor, the
overall dispersion of the proposed algorithm can be
controtled; especially, a nearly isotropic dispersion can be
obtained. Further by removing the numerical ether, the
exact phase velocity can be achieved. Additionally the
proposed method can relax the Courant Friedrich Levy
(CFL) stability constraint of the standard FDTD, which is
stable for a larger time step.

2. FORMULATION

The standard Yee algorithm approximates the spatial
derivative using the second order central finite difference,
(1). Another spatial derivative scheme is also known of
same order of accuracy, which is given by (2). To keep
using the Yee’s grid, the values at each 4 points are
calculated by linearly interpolating two values in adjacent
points as shown in figure 1, which yields (3).
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Note that the superscript of the difference operators
indicates the number of sampling points used for
approximating the derivative.

Substituting (3) into the standard Yee algorithm, a new
scheme can be formulated whose numerical dispersion is
more anisotropic than the Yee method. However, the
behavior of the anisotropy is opposed to that of the standard
Yee method. Hence, by combining the new and standard
methods the anisotropy of the dispersion can be controiled:
in the new scheme the spatial derivatives are replaced by a

weighed sum of (le and Ej As an example, Maxwell’s

equation for the transverse magnetic (TM) wave can be
discretized as seen in (4) where @ is a weighting factor
which has to be determined.
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where d, is the central time difference scheme.

3. DISPERSION AND STABILITY
ANALYSIS

Following the procedure in [2], the numerical dispersion
relation of the proposed scheme can be derived
2 1 4C,

assuming Ax = Ay =A.
2
"Cf] A C,

where fy,, denotes the dispersion relation of the standard

1= Free +A—‘20+cx(a o )

FDTD [2]. C+ and Cx are defined as

gl (Y

As seen in (5), the dispersion error is a function of ¢t as
well asA, and A,

minimize the fluctuation of the dispersion over all
propagation directions. Hence, first it is investigated the
variation of & as a function of azimuth angles. Since (5) is
a quadratic equation about & , the exact solution of (5) can
be obtained analytically. Figure 2 shows the variation
of & as a function of the cell size. As seen in the figure, for
mostly adopted cell size, A /10~ A/20,« is not varied
much and hence can be considered constant, and optimal
value. This indicates the optimal & makes the dispersion
almost zero (dispersionless) in all directions independently
Thus the

. It is very difficult to determine & to

on the other parameters such as A and A,.

proposed scheme provides almost isotropic dispersion with
the optimal & . Figure 3 shows the computed dispersion
with the estimated optimal & , which is almost isotropic as
expected. It can be observed that the phase velocity of the
proposed scheme is slower than that of the Yee scheme, but
by artificially reducing the cell size (forcing to equalize the
numerical phase velocity to the ideal velocity) the
numerical propagation constant can be made very close to
the exact value over all azimuth angles. Next the effect of
cell size (frequency) is considered on ¢ for a wide band
simulation. Figure 4 shows & as a function of the cell size,
which indicates & is not varying much for a wide range of
the cell size. Therefore the proposed scheme is also suitable
to a wide band simulation. Figures 2 and 4 also show & is

cA, /A,

Next the stability of the proposed scheme is analyzed.
Assuming that ¢ is constant and substituting ¢ calculated

very insensitive to S =

atp = 0% into (5), (5) can be expressed simply as
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where @ denotes a numerical complex frequency. In (6),

6

@ must be real to guarantee that the field component aoes
not exponentially grow at every time step. Thus the
stability criterion is simply given by CAf < A . Therefore
the proposed algorithm may be stable for larger time steps
than for the standard Yee scheme. However, it should be
pointed out that this criterion is not obtained rigorously, so
that in practical situations the stability condition could be
less than the estimated value.

4. NUMERICAL RESULTS

To demonstrate the validity of the proposed FDTD
method, a simple problem is considered. An air-filled
cavity enclosed by a perfect conductor whose size is
400400 cells is selected for both the proposed algorithm
and the standard Yee algorithm. A Gaussian pulse with a
frequency f, =3GHz and a bandwidth
BW =1.5GHz is excited at the center of the cavity. Grid
where A, is the

center

size is chosen to be A, /20,
wavelength of the highest frequency. Figure 5 shows the
E, field component calculated at the source point. It is

shown in the figure that the proposed scheme is stable

beyond the CFL limit, S =1/ \J2=0.707 fora square
Yee grid in 2D FDTD. In figure 6, the results of the
proposed scheme are compared, which uses the stretched
coordinate to remove the artificial dielectric effect. As
expected, the Figure shows that the time-domain pulse of
the stretched case is slightly faster than those of the Yee and
the unstretched case.

5. CONCLUSIONS

A novel FDTD method to reduce the numerical
dispersion error is proposed by combining two spatial
difference operators that sample fields at 6 points in the
space. Introducing the stretched coordinate, an almost
dispersionless FDTD scheme is developed, and it is also
shown that the new method is stable beyond the CFL limit.
For a cavity problem, the proposed algorithm is verified
comparing with the standard Yee algorithm.
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Figurel. Yee grid for 2D problem algorithm.
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Figure 2. The maximum variation of weighting factor

versus the grid sampling density for s=0.6, 0.8, 1.0.
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Figure 3. Comparison of normalized phase velocity
of the standard Yee algorithm and the proposed
algorithm with s=0.5, a=0.1674, A=A/20.

versus the grid sampling density for s=0.6, 0.8, 1.0.
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Figure 5. Comparison of E, field inside the cavity for
the standard Yee (s=0.6) and the proposed scheme
(s=0.6, s=0.8)
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Figure 6. Copamrison of E, field inside the cavity for
standard Yee (s=0.6) and proposed scheme of
stretched and unstretched case (s=0.8)
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