초청 강연 V

MCG를 이용한 심근전류 매핑 및 심근허혈 진단

- 좌장 | 삼성서울병원 김영욱

- 표준(연) 이용호

MCG를 이용한 심근전류 매핑 및 심근허혈 진단

이 용 호 한국표준과학연구원 생체자기계측센터

Korea Research Institute of Standards and Science

KRISS

ECG and MCG

심근전류 → 심장의 수축과 이완

심전도(ECG) 및 심자도(MCG)

Electric activation of cardiac muscle cell

Heart - Blood pump

Heart and Coronary arteries

Heart muscle (Myocardium)

Action potential contracts muscle cells

Ischemia – Insufficient blood supply

Cellular level electromagnetic changes

- Decrease of the resting transmembrane potential
- Decrease of action potential amplitude and morphology
- Decrease and inhomogeneity of electrical conduction
- → Change in magnetic field pattern (: Magnetocardiogram)

Noise reduction

KRISS

Applications of MCG

- Ischemia
 - 재분극 전류가 심실표면에 평행
 - 허혈성 심근 및 경색 후 소생 가능한 심근조사
 - Stress MCG : ST shift
- Risk analysis
 - 심실세동
 - ST interval/QT dispersion : fragmentation
 - Late field : 정상/경색의 경계부분
- 비정상 전기전도 위치추정
 - 심실빈맥/WPW 증후군: 부수적인 전도경로의 위치추정
- Fetal MCG
 - 자율신경계 조사

<u>kri§s</u>

Decision of acute coronary syndrome (ACS)

Need more accurate technology

KRIS

Acute chest pain (USA)

8 Million ED Visits for Chest Pain Each Year

MI: Myocardial infarction

<u>KRISS</u>

MCG in Coronary artery disease

Magnetocardiography predicts coronary artery disease in patients presenting with acute chest pain

J.W. Park, Hoyerswerda, Germany

n=185 patients (CMI MCG-2409)

1

Conclusion: In patients with acute chest pain and without ST-segment elevation MCG predicted CAD with a 97.8% probability and excluded CAD with a 84.8% probability. The value of unshielded MCG in clinical routine is limited due to poor signal quality in a significant number of patients (23.9%).

ICII				En Till stater Activities		n milati aki ilabi a kiti da j	
<u>icu</u>		MCG (n=185)		ECG	Trop I	Echo
					(n=160)	(n=185) (n=184)
	AUT	R	1	R2			
Specificity 8	32.5%	92.8%		76.2%	91.1%	90.5%	76.2%
Sensitivity 8	6.4%	95.1%		88.7%	33.9%	42.7%	51.0%
NPV 6	3.5%	84.8%		66.7%	27.4%	31.7%	31.4%
PPV S	4.5%	97.8%		92.6%	93.3%	93.8%	87.9%

ESC Congress 2004

http://cic.escardio.org/AbstractDetails.aspx?id=13845

KRI§S

MCG vs. ECG in ischemia

Advantages of MCG

- More sensitive to tangential currents
- Sensitive to vortex (rotating) currents (ECG is not)
- Detects better current flow between endocardium and epicardium
- Less dependent on conductance variation outside the heart
- Fully non-contact (no skin-electrode problems) and non-invasive

Limitations of ECG in Ischemia

- Relatively high specificity for selected ECG findings
- But, low sensitivity in general
- Unrecognized MI (myocardial infarction) in ECG: 4~44 %

Am Heart J 2004;148:277-84

MCG system

Magnetically-shielded room

KRISS

Technical Tasks

- ► Amplitudes of MCG signals : ~ 100 times larger than brain signals

 However, disease-specific signal components are small in amplitude
 - → Good signal-to-noise ratio is still necessary
- ► Conventional MCG systems are bulky and less economical
 - → Economic, yet, effective MCG system is necessary
- ► How can we get useful information from the MCG?
 - i) Find specific features in the MCG data for each specific diseases
 - ii) Quantify these signatures using characteristic factors

SQUID system

SQUID (Superconducting Quantum Interference Device)

Measuring system

Insert

Sensor distribution

64 sensing channels Sensor interval : 22-35 mm Cover area : 162 mm x 162 mm

► Sensor coverage is smaller than the conventional vertical measurements, but it is large enough to get the essential field distribution

KRI<u>S</u>S

Operation in Heart Center

Dewar/Gantry/Bed

- Positioning laser beam
- Load-adjustable, nonmagnetic cycle
- Movable bed and gantry

Shielding factor (MSR): 40 dB @ 0.1 Hz, 75 dB @ 10 Hz

Control/Acquisition

- Compact readout electronics
- Acquisition/Analysis by single PC
- Patient monitoring
- 64ch A/D card (16 bits)

Signal processing

Acquisition/Analysis software

P-wave R-peak

- * Averaging
- Digital & Morphological filtering
- Field mapping
- Current arrow map using MNE
- Transform tangential to normal

Field & Current map

- Direction and magnitude of current vector
- Depth of main current distribution
- Temporal stability of current distribution

KRISS

Data analysis: ST-interval

- The <u>ST-T interval</u> is very suitable to be analyzed by the MCG, because:
 - The MCG is especially sensitive to tangentially spreading currents
 - The currents during ventricular repolarization are tangentially spreading currents
- ST-T interval → Well reflects myocardial ischemia

Comparison with Coronary angiography

Stable angina pectroris MCG score: 3

Prox. LAD: 70 % stenosis 1st diagonal: 80 % stenosis

Non ST-segment elevation MI MCG score: 2

Prox. LCX: 90 % stenosis

KRISS

Discussion

- MCG provides information on myocardial currents
- Quantitative analysis of ventricular repolarization parameters
 - → Detect ischemia in patients with apparently normal ECG
 - → Early, quick & non-invasive screening of CAD with acute chest pain
- What is golden standard?
 - Coronary angiography?