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Switching Control for 2nd Order Nonlinear Systems Using Sector
Consisting of Singular Hyperplanes
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D. H. Yeom, K. H. Im, and J. Y. Choi

Abstract—In this paper, we propose a switching control method for 2nd order nonlinear systems. The main idea behind the
method is changing the control law before the trajectory of the solution arrives at the singularities imposed on the denominator
of the control law. We show that the control system is asymptotically stable from the fact that the sector consisting of the
singular hyperplanes is an invariant set. Illustrative examples are given.
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1. Introduction

In this paper, we propose a switching control scheme for 2nd
order nonlinear systems. The proposed method is similar to the
inversion-based control such as feedback linearization in respect
that some nonlinear dynamics are cancelled by control input and
also similar to the constructive Lyapunov function method such as
backstepping in respect that the control law is directly induced
from the derivative of Lyapunov functions. The difference from the
existing methods is that the proposed method is not restricted
within a specific class of nonlinear systems. That is, the method
does not require the rank conditions and the involutiveness unlike
feedback linearization and is applicable to the systems that are not
triangular forms contrary to backstepping. In addition, the
classification of applicable systems is not clear in sliding mode
control. The applicable systems of the proposed method can be
discriminated through the observation of the property of the given
system on the phase plane.

Each switching control law of the proposed method is designed
50 as to guarantee the negative definiteness of the time derivative of
Lyapunov function. The resulting control input is given in the form
of a rational function. So, it is not defined where the denominator
of the rational function is equal to zero. To avoid these singularities,
the control input is changed by switching rules before the trajectory
of the solution meets the singularities. The asymptotic stability of
the system can be shown by the invariant property of a sector
composed by the singularities.

2. Problem Statements
Consider 2nd order affine nonlinear systems with single input
and constant input vector . And suppose that one of the dynamics
of the system consists of only a drift term i.e. the control input is
not involved in this scalar system.

x=f(x)+gu
or s )
*=f(x)+gu
{5‘2 = £

where x =[x, x,]'. f(x)=[£,(x) £,{x)]'is a smooth vector field
with the property f(0)=0 and g=[g, O] is a constant input
vector. At least one of the equilibria of the system is the origin
because f(0)=0 and u(0) =0. The objective is the regulation of
both states, x, and x, .

Construct a quadratic function ¥ = x'Mx for this system, where
M is a symmetric positive definite matrix. Derivation of the
function with respect to time along the trajectory of the solution of
the system yields

V = %'Mx + x' M
=2x'M f(x)+2xXM gu

because M is a symmetric matrix and u is a scalar. Suppose that
the control input is defined as follows ‘

1
[ —x'Mx]. 3
v [ x'M f(x)-x ] 3)

@

u=

Since ¥V = —2x'Mx <0 for any x except the origin by substituting
(3) for (2), the origin of the system may be regarded as
asymptotically stable. But that is not reasonable because the
control input (3) is not defined where the denominator of the
rational function x’Mg is equal to zero. Here, we define a
terminology what is called singular hyperplane.

Definition 2.1 (Singular Hyperplane) The set of points where the
denominator of the control input (3) is equal to zero is named the
singular hyperplane generated by control input (simply singular
hyperplane), S . That is, for given system (1) with control input
).
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S={xe z|x'Mg=O,x¢0} @

is the singular hyperplane with Mg as its normal vector. ]
To avoid the situation that the trajectory of the solution meets
the singular hyperplane, the control input has to be changed by
selecting another M before the trajectory arrives at the singular
hyperplane. Unfortunately, the asymptotic stability of the origin is
not guaranteed only by avoiding the singular hyperplane because
of the discontinuity of Lyapunov functions by replacing M and an
unexpected behavior caused by switching action. Hence, there is a
need to develop a method which makes the trajectory avoid the
singular hyperplane, stabilizes the system in spite of the
discontinuity of Lyapunov functions, and overcomes an
unexpected behavior caused by switching action, simultaneously.

3. Switching Control Law
In this section, we propose a switching control scheme which
stabilizes a class of 2nd order nonlinear systems given in (1) by
means of the similar control law given in (3). Consider again a
system given in (1) with a discontinuous control input as follows

{x, = fi(x)+u
X, = f;(") ©)
u= Mg [—x’Mkf(x) - x'ka],

where g is normalized into [1 0] to simplify the problem. The
control input  differs from (3) in respect that it is not continuous
anymore because M, in (5) is changed according to switching
signal. Note that u# is well defined around the origin because the
convergence rate of the numerator of the control input is faster than
that of the denominator from the fact that the orders of the
numerator and the denominator with respect to 0 are 2 and 1,
respectively. As mentioned in Section 2, u should be changed by
switching M, among appropriate candidates of positive definite
matrices before the trajectory of the solution arrives at the singular
hyperplane defined in Definition 2.1. The problems are
when M, should be changed and how to determine an
appropriate M, .

The first problem, when M, should be changed, is concerned
with the condition that generates switching signal. When the
trajectory is sufficiently close to the current singular hyperplane,
one must switch the control input to another one with a new
singular hyperplane. The simplest way is let switching occur when
the distance between the singular hyperplane and the current state
on the trajectory is less than a fixed value ¢ . In this way, however,
there is a problem where the trajectory lies in the ball with radius

¢ and the origin as center. In this ball, the switching repeats
infinitely because the distance from the current state to the singular
hyperplane is always less than £ . This problem can be solved by
using the ratio of the distance form the current state to the origin
and the singular hyperplane. That is, the switching condition is set
as follows

___|x'M,,g| <.
"x"z "ngnz

The second problem, how to determine an appropriate M, , is

®

more complicated because the switching action may lead to
unexpected behaviors in the system such as chaotic transient
response and even instability [8,9,10,12]. For example, it is well
known that a switched system consisting of stable subsystems may
become unstable under a certain switching rule [9,15].

In this paper, selecting M, is directly related to the singular
hyperplanes because M,g is the normal vector of the singular
hyperplanes. To go ahead the discussion, we need to define some
terminologies called attraction region, zero attraction region, and
sector.

Definition 3.1 (Attraction Region) The region where the product
of x, and the drift scalar system f,(x) in (5) is less than zero is
called the attraction region. That is,

AR={xeN*|x, f,(x) <0} %)

is the attraction region for x, (simply AR). ]
Definition 3.2 (Zero Attraction Region) The attraction region in
touch with the origin is called the zero attraction region
abbreviated to ZAR. n
Definition 3.3 (Sector) The unilateral region between below one
singular hyperplane and above the other singular hyper -plane is
called the sector. |

Note that the region between below or above both singular
hyperplanes is not a sector. In case of 2nd order system given in (5),
the criterion of whether the current state x belongs to the sector
consisting of two singular hyperplanes with Mg, M,g as their
normal vectors is

XM g -xM,g <0. (8)

Using the above definitions, we can classify the system to which
the proposed switching method can be applicable as follows
Assumption 3.4 Suppose that 2nd order nonlinear systems given
in (5) have ZAR that include both unilateral sectors at least around
the origin. ]

For example, the proposed method can be applicable to a system
whose attraction region is formed as follows.

Fig. 3.1. Attraction regions for %, =x, +xx, +x] .
In Fig. 3.1, both attraction regions are the zero attraction region,
ZARs include the sector 1 entirely and partially include the sector 2
around the origin. The numerical result for this system is given in
Example 1 in Section 5. The other side, the proposed method can
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not be applicable to a system whose attraction region is formed like
as Fig. 32,

Observing AR and ZAR of the given system, the sector should
be appropriately assigned to satisfy Assumption 3.4, That is, one
should select M, so as to generate suitable singular hyperplanes
for applicable systems.

A x,

Fig. 3.2. Attraction regions for %, =x, +xx; and %, =x, +x +xx, .

4. Stability Analysis
In this section, we discuss the stability issue of 2nd order
nonlinear systems with the proposed switching control. If the
trajectory stays on a sector on ZAR in the future, we can assert that
the origin is asymptotically stable from the invariant property of
the sector consisting of the singular hyperplanes. The following
theorem shows that a sector consisting of singular hyperplanes is
an invariant set when some switching rule is added to (6).
Theerem 4.1 If the following switching rules are applied to the
control system (5)
[xM,g]
Mz ﬁMﬂgﬁz
or M
(xx3)(xxS,) <0
where k={12}, M, ={a, 7, 7, B1>0,
product of vectors, and S: denotes the tangent vector of the
corresponding singular hyperplane, then the sector consisting of
the singular hyperplanes composed by

<&

®

x denote the cross

M, is a positively
invariant set (Proof is omitted by space limitation). =
Remark 4.2 Each singular hyperplane plays the role of a kind of
attractor and has a temporary invariant set what is called the
Lyapunov level surface. ]
From now, we discuss the stability issues by means of the
invariant property of the sector. As mentioned in the introduction
of this section, we show that the trajectory of the solution
converges to the origin if it stays in the sector on ZAR afler a
certain time.
Theorem 4.3 (Local Stability) The origin of the system satisfying
Assumption 3.4 is locally asymptotically stabilizable (Proof is
omitted by space limitation). ) B
Intuitively speaking, the above theorem states that the terminal
point of the trajectory admits of only the origin because the
trajectory never escape from the com shaped sector and x,
converges to zero on there.
Theorem 4.4 (Globally Asymptotic Stability) If ZAR include
both unilateral sectors entirely, then the origin of the system is

globally asymptotically stable (Proof is omitted by space
Iimitation). n

5. Conclusions

We proposed a switching control method for 2nd order
nonlinear systems. The proposed method can be used more widely
in applications comparing with the existing methods such as
feedback linearization, back stepping, and sliding mode control.
The striking features of the proposed method are intuitive and
simple design procedure, and the independency with respect
to fi(x). However, the proposed method can be applied to 2nd
order system with single input. The future research will be carried
out concerning with this issue to extend the method to nth order
systems.
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