“Los Alamos National Laboratory
Operated by the University of California
for e us Depanment of Energy

Los Alamos National Laboratory
* ~ $2 Billion annual budget
* ~ 8000 University of California employees
¢ > 3800 technical staff members
* ~13,000 people on site each day
* 43 square miles, 2000 buildings with ~ 8 million sq. ft.

Strategic Research Directorate: Works with Academia and Industry
* 2,000 staff, ~$400M
* Host to ~1,500 students and ~400 Post Docs per year
* 260+ participating universities
® Intellectual property and economic development (2004)
* 104 industrial partnerships; 68 CRADAs
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Why Fuel Cells?

{Major funding come from U.S. DOE)

» U.S. Highway Transportation Uses More Oil Than Is
Produced Domestically
+ (U.S. Reserves/Production is estimated as low as 7 years)

+ To Reduce Oil Consumption — Target is the transportation sector
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Vehicle Efficiencies
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Weli-to-Wheel Green-House-Gas Emissions

Steady-State Emissions

(does not include vehicle start-up)
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Fuel Cell & Hydrogen Timeline at Los Alamos

Los Alamos activities & accomplishments vs. external events

Institute for Hydrogen & Fuel Cell Research

Hydeogen Storagn Centar of Excetlencs Awarted

AR & Hydrogen Fuel
PNGY Medal, Energy 100 & Energy @ 23 Awards
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Hamilton Standard SPE Electrolyzers for 02 Production on  Nuclear Submarings
Bawsorat Eeatnic develops SPE fuel onit far NABA Gomind Miswinmg

LASL Westinghouse RoverfNERVA
Nuclear Rocket Program
(Hydrogen Propellant)

«
¢  Los Alamos defense programs develop
2 science and engineering base for
hydrogen isotope purification, storage,
/ and materials interactions




Fuel Cells

Some currently funded research areas
Sponsors inciude DOE/EERE, DOEIFE, DARPA and industry

» Electrode Optimization

» Non-Precious-Metal Catalyst Development

» Development of New Higher-Temperature Membranes
+ Non-Nafion Electrodes

» Stack Durability

- Solid-State Sensors for Fuel Celi Applications

+ Freeze and Cold Operation

+ Fundamental Science for Cost and Durability

+ Direct Methanol Fuel Celi R&D

+ Small Hydrogen Fuel Cells for Battery Replacement

» Hydrogen Production
— Hydrogen purification
— Diesel reforming for SOFC APU applications
— Methanol steam reforming for portable power applications
— High-temperature electrolysis

«+ International Hydrogen Codes and Standards Developn}c\ent
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XRF Imaging and Segment Performance
in the Segmented Cell
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Durability: Fuel Cell Drive Cycle Testing

Voltage control profile:
Volt vs. Time {sec)

Power control profile
and

Watts vs. Time (sec)

1 cycle occurs every 20 minutes
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Power Response Deviation from Command Power
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Power Response Deviation from
Command Power / Watls
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+ 50% RH drive cycle cell shows lower power response than 100% RH cell
» Commanded power is identical

+ 50% RH power response shows greater deviation from commanded power
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Drive Cycle Power Response
50% RH Humidification 100% RH Humldlflcatlon
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50 % Relative Humidity Operation

» Power output has shown a gradual power increase over time.
« Power output increased after pinhole formed in membrane

« Cyclelcycle power variations higher than 100% RH

» 100 % Relative Humidity Operation
- Power output for 100% RH drive cycle cell has shown ~ little decay
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Electrocatalyst Growth
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Fresh Fuel Cell Potential Cycling Tests

Platinum Particle Size f nm

2 g 2 gk s & EF T & ok PE P& ok pF
I 3 gﬁ g% Sy 35 38 3% 38 2% B §§ s8¢ 5§ 3E §§
; ED g §>' S8 8% o3 Bt 8¢ $2 5% 35 08 §¢%
g % g § SR ox 8 g oz ox Zx 8B NE 22 X¥
g SEER F % B B2/ -7 % B OUR

» Cycling is more detrimental than steady state operation

* # cycles has larger effect on catalyst sintering than time

» Pt particle growth on cathode occurs for steady-state, enhanced with cycling
+ Greater particle growth at high temperatures

. Lower partucie growth at low humidification N
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Freeze/Thaw cycling
GDL: carbon cloth (E-tek), Active area: 5 cm?
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-5 t0 80°C cycle »  Fuel cells stored under wet conditions {no attempt to dry}.
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Alternative Membrane Research
DMFCs, Lower Cost, and High T Membranes
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Minimizing interfacial resistance has led to

9 S highest reported performance of a DMFC' and
LR oV improved durability in jong term H, testing.
_p\(\\/—— . Alternative polymer significant cost savings and higher TQ’L!
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N ‘ High T polymers based on iLs have shown

" reasonable conductivity, work is preliminary.
TKim et. al., J. Efectrochem. Soc., in press. Jc‘)
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Ab initio Molecular Dynamic (MD)
Calculations

Tritiic Acid Monohydrate Crystal

Supercell {22 1)
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. Introduced proton defect
Sotvation of Protans. Direct DFT (observed mobifity through 20000 time
Computations on Water-Acid Complexes steps in MD run)

m MD models have given insight into proton conduction.
—~ B3LYP lowest energy state calculations of hydrated acid
groups (left) correlate to water uptake and acid strength.
— Dynamic models (right) correlate to proton conductivit)!/\
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Non Precious Metal Catalysis

Objective:

Develop low-cost non-precious metal oxygen reduction reaction (ORR})
catalyst for the polymer electrolyte fuel cell (PEFC) cathode with similar
activity and performance durability to the currently used noble-metal
based cathode catalysts.

Focus:

* Transition metal macrocycles (e.g. pyrolized TPP & TMPP chelates of

Co & ColfFe) — advanced phase; progress to date summarized in this
presentation

+ Chalcogenides (e.g. Ru-based and Ru-free catalysts) ~ early phase,
very promising initial results

* Metal oxides (e.g. NiO, Co,0, NiCoO, perovskitic LaSrCo oxides,
CuMn oxides) — part of future research
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