Factors controlling groundwater chemistry of the Triassic Sandstone aquifer in North Yorkshire UK

  • Yoshida K. (Water Resources Dept., International Division, Yachiyo Engineering Co., Ltd.) ;
  • Bottrell S.H. (School of Earth and Environment, University of Leeds) ;
  • West L.J. (School of Earth and Environment, University of Leeds)
  • Published : 2005.05.01

Abstract

It is important to understand groundwater conditions such as recharge, flow and hydrochemical process occurred within an aquifer for groundwater protection and groundwater resource management. Groundwater from the Triassic Sherwood Sandstone aquifer of North Yorkshire has been used for industrial purposes and domestic water supply. Tn order to understand the processes affecting groundwater chemistry and identify the sources of high chloride, sulphate and nitrate concentrations hydrochemical and isotopic measurements were carried out. Hydrochemical and isotopic measurements indicated that five groundwater types exist within the Sherwood Sandstone aquifer of study area. The results of hydrochemical and isotopic measurements showed that older groundwaters have different hydrochemical and isotopic characteristics from recent recharge water. It was also found that water-rock interactions are the dominant mechanism controlling the ${\delta}^{13}C$ composition of dissolved inorganic carbon, the ${\delta}^{34}S\;and\;{\delta}^{18}O$ composition of dissolved sulphate and the strontium isotope ratios ($^{87}Sr/^{86}Sr$) in recent recharge water and old groundwater. Several abstraction boreholes within the Selby wellfield have been contaminated by saline water. The isotopic data of saline groundwater samples taken from these abstraction boreholes indicate that saline waters are derived from the dissolution of the Triassic evaporites within the Mercia Mudstone.

Keywords