Influence of High Dose Gamma Ray on Accumulation of Hydrogen Peroixde in Pumpkin (Cucurbita ficifolia Bouché) Seedlings

Advanced Radiation Technology Institute, KAERI: <u>Seung Gon Wi</u>, Byung Yeoup Chung, Jae-Sung Kim, Jin-Hong Kim, Myung Hwa Baek, Ju Woon Lee

Objectives

In this study, we applied cerium chloride method to ultra-thin sections of each tissue in order to examine the effects of high dose gamma ray on H_2O_2 production in pumpkin tissues and to gain more detailed information on the pattern of H_2O_2 deposition after gamma irradiation.

Materials and Methods

- O Plant material pumpkin (Cucurbita ficifolia Bouché)
- O Methods
 - Gamma irradiation
 - o The 9-day-old seedlings were exposed to 1 kGy.
 - Methods
 - o Cytochemical localization of hydrogen peroxide H_2O_2 was detected by the cerium chloride (CeCl₃) method, as described by Bestwick et al. (1997). Ce³⁺ + $2H_2O_2 \rightarrow Ce(OH)_2OOH$ (electron dense deposits) + H^+
 - o Determination of H_2O_2 content H_2O_2 content was measured colorimetrically as described by Jena and Choudhuri (1981).

Results and Discussion

- The accumulation of H₂O₂ mainly increased on plasma membrane and middle lamella by gamma ray, especially in leaf.
- O Parenchyma cells were more sensitive than vessel elements to gamma ray, in terms of H₂O₂ production.
- The accumulation of H₂O₂ varied depending on the different cell and tissue types of pumpkin. Further studies are needed to examine why senescence in cotyledon was delayed after gamma irradiation.

^{*}Corresponding author: (Phone) 063-570-3331 (E-mail) bychung@kaeri.re.kr

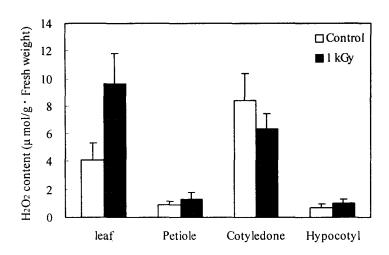


Fig. 1. The contents of H_2O_2 in total homogenates from the tissues at 19 days after gamma irradiation. Data are the means with standard errors (n=4).

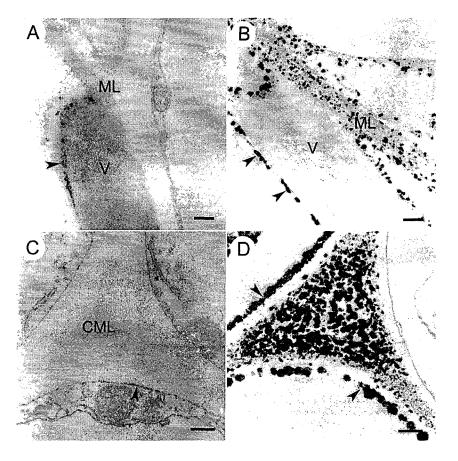


Fig. 2. Localization of hydrogen peroxide in vessel (**A** and **B**) and parenchyma cell (**C** and **D**) of leaf in control (**A** and **C**) and plant irradiated with 1 kGy (**B** and **D**). Note the cerium perhydroxide deposits were significantly increased in plasma membrane (arrow heads) and cell corner middle lamella after gamma irradiation. CML, cell corner middle lamellae; ML, middle lamella; V, vessel wall. Bar=0.5 μ m.