Functional analysis of AtHAK5, a high affinity K⁺ transporter, under K⁺starvation and low temperature

Sun-Ju Ahn*, Gap-Chae Chung, Daniel P. Schachtman, Kyung-Soo Min, and Tei-Ik Whang Agricultural Plant Stress Research Center, College of Agriculture & Life Science, Chonnam National University, Gwangju 500-757, Korea.

Donald Danforth Plant Science Center, 975 North Warson Rd., St. Louis, MO 63132

Objectives

Potassium (K^+) is essential for plant growth and is the most abundant cation in plants. Plants have multiple mechanisms for K^+ uptake from soil and translocation to various plant tissues. Previouse work showed that only AtHAK5 was up-regulated upon K^+ deprivation among 13 genes named AtKT/KUP. However, relatively little is known about the physiological role of proteins in this family. Therefore, the present study is trying to understand several functions of AtHAK5.

Materials and Methods

Seeds were surface sterilized and then planted on plates with modified nutrient medium. Plants were grown under a 12-/12-h day/night cycle under 110 μmol m⁻² s⁻¹ light during the day. After K⁺ deprivation, biomass was measured and total RNA was isolated and its quality was checked by agarose gel electrophoresis. Two micrograms of DNA free RNA was then reverse transcribed using First-Stand Synthesis System for RT-PCR. cDNA concentrations were then normalized using β-tubulin and ubiquitin primers. For the Rb⁺ uptake experiments, plants were moved to beakers containing Rb⁺ at 20, 100, and 1,000 μM concentrations after 2 d of starvation. Trace amounts of ⁸⁶Rb⁺ were added to start a 10-min uptake period and plants were moved to beakers containing 0.5 mM CaSO₄. Roots were then blotted, weighed, and placed in scintillation vials containing scintillant. Radioactivity in the roots was counted using a Beckman LS6500 scintillation counter.

Results and Discussion

Previousely, we found that the gene and protein structure of *AtHAK5* is distinct from the other *AtKT/KUPs* and induced under K⁺ deprivation. AtHAK5 T-DNA insertion knock-out mutant was confirmed by RT-PCR (Fig. 1). AtHAK5 was lacking a component of high affinity K⁺ uptake that was found in Col.(wild type) when compared the kinetics of ⁸⁶Rb⁺ uptake after K⁺ starvation (Fig. 2). In addition, we found that a decrease in whole-plant biomass and growth rate at K⁺-limiting conditions was related to the HAK5 gene present (Fig. 3). In addition, *AtHAK5* is up-regulated not only K⁺ deprivation but also to low temperature (Fig. 4).

<u>Acknowledgement</u>: This work was supported in part by KOSEF to APSRC (R11-2001-09201004-0) of Chonnam National University in 2004

*Corresponding author: Tel: 062-530-2052 E-mail: asjsuse@chonnam.ac.kr

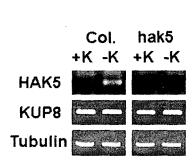


Fig. 1. Confirmation of hak5 T-DNA insertion line by RT-PCR

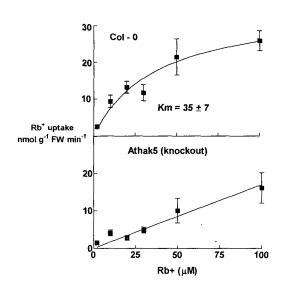
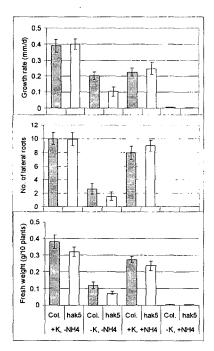
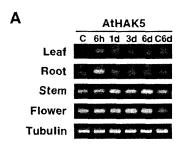




Fig. 2. Comparing the kinetics of ⁸⁶Rb⁺ uptake after K⁺ starvation

Fig. 3. Growth analysis of Col. and hak5 T-DNA insertion line on agar plates

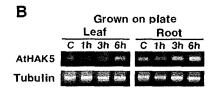


Fig. 4. Temporal expression of AtHAK5 to low temperature