An early transcription checkpoint ; A dual role of capping enzyme in RNA polymerase II transcription

  • Cho Eun-Jung (College of Pharmacy, Sungkyunkwan University)
  • Published : 2005.04.01

Abstract

Recently, data from several groups have raised the concept of 'checkpoint' in transcription. As capping of nascent RNA transcript is tightly coupled to RNA polymerase II transcription, we seek to obtain direct evidence that transcripiton checkpoint via capping enzyme functions in this early regulatory step. One of temperature sensitive (ts) alleles of ceg1, a guanylyltransferase subunit of the Saccharomyces cerevisiaecapping enzyme, showed 6-azauracil (6AU) sensitivity at the permissive growth temperature, which is a phenotype that is correlated with a transcription elongational defect. This ts allele, ceg1-63 also has an impaired ability to induce PUR5 in response to a 6AU treatment. However, this cellular and molecular defect is not due to the preferential degradation of the transcript attributed from a lack of guanylyltransferase activity. On the contrary, the data suggests that the guanylyltransferase subunit of the capping enzyme plays a role in transcription elongation. First, in addition to the 6AU sensitivity, ceg1-63is synthetically lethal with elongation defective mutations of the largest subunit of RNA polymerase II. Secondly, it exhibited a lower GAL1 mRNA turn-over after glucoseshut off. Third, it decreased the transcription read through a tandem array of promoter proximal pause sites in an orientation dependent manner. Interestingly, this mutant also showed lower pass through a pause site located further downstream of the promoter. Taken together, these results suggest that the capping enzyme plays the role of an early transcription checkpoint possibly in the step of the reversion of repression by stimulating polymerase to escape from the promoter proximal arrest once RNA becomes appropriately capped.

Keywords