KMB-1-S4 Substrate temperature dependence of structural and magnetic properties of Fe_{1-x}Mn_x thin films on GaAs(100) using molecular beam epitaxy Younghun Hwang^{*1}, Jeongyong Choi¹, Soon Cheol Hong¹, Sunglae Cho¹, Sungyoul Choi², Hyun-Min Park³, Kyu-Won Lee³, and Yongsup Park³ ¹Department of Physics, University of Ulsan, Mugeo-2dong, Nam-gu, Ulsan 680-749, South Korea. ²Electronics and Telecommunications Research Institute, Taejon, 305-700, South Korea ³Materials Evaluation Center, Korea Research Institute of Standards and Science, Taejon 305-600, South Korea FeMn thin films have been widely used as a pinning layer in a spin-valve type magnetic sensors and magnetic data storage [1]. Fe_xMn_{1-x} alloys have various structural phases such as α , γ , α -Mn, β -Mn, and ε . The crystal structure and lattice constants of Fe_xMn_{1-x} alloys strongly depend on the alloy composition, x [2]. For Fe composition, x<0.2, Fe_xMn_{1-x} alloys are the bcc α -phase (a=2.89 Å) which is ferromagnetic at room temperature [3], and for 0.2<x<0.6 the fcc γ -phase (a=3.63 Å) which is antiferromagnetic with T_N =520~540 K [4]. In this study, we have investigated the structural and magnetic properties of Fe_xMn_{1-x} thin films grown on GaAs(100) substrates by molecular beam epitaxy (MBE). We have obtained the γ - and α -Mn phase Fe_xMn_{1-x} thin films at room temperature and 300 °C growth temperatures, respectively. The evolution of the crystal structure from the α -phase to the γ -phase characterized by X-ray diffraction patterns (XRD) will be discussed in detail. From the magnetization measurements of the Fe_xMn_{1-x} alloys, the γ - and α -Mn phase Fe_xMn_{1-x} thin films showed antiferromagnetic and ferromagnetic ordering at room temperature, respectively. - [1] J. Nogués and I. K. Schuller, J. Magn. Magn. Mater. 192, 203 (1999). - [2] Y. Endoh and Y. Ishikawa, J. Phys. Soc. Jpn. 30, 1614 (1971). - [3] C. Paduani and E. G. da Silva, J. Magn. Magn. Mater. 161, 184 (1996). - [4] W. Williams, Jr. and J. L. Stanford, Phys. Rev. B 7, 3244 (1973).