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Abstract
We have fuzzy hypotheses testing from Bayesian statistics with ideas from fuzzy sets
theory to generalize Bayesian methods both for samples of fuzzy data and for prior
distributions with non-precise parameters. Appling the principle of agreement index, the
posterior odds ratio in the favor of hypotheses H,, is equal to product of the fuzzy odds
ratio and the fuzzy likelihood ratio. If the posterior odds ratio exceeds the grade judgement,

we accept the hypothesis H for the degree.
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1. Preliminaries

We have fuzzy hypotheses testing from
Bayesian statistics with ideas from fuzzy sets
theory to generalize Bayesian methods both for
samples of fuzzy data and for
distributions with non-precise
The posternior odds ratio

prior
parameters.
in the favor of
hypotheses H; is equal to product of the
fuzzy odds ratio and the fuzzy likelihood ratio.
If the posterior odds ratio exceeds the grade

judgement, we accept the hypothesis H, for

the ratio degree.

x which
follows a distribution with probability density
function(p.d.f.) belong to a parametric family:

Consider a stochastic quantity

x~f(x16),0=(6,,-,0,)EO<R™

In Bayesian statistics one assume that the

the pdf Axl@ is a
stochastic quantity, too.

parameter 6 of

A prior @ is a distributed according to

some p.df. (8| 5y). The prior parameter
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7€ ES R? has to be known.

Given sample x=(x, -,x,) of =
stochastically independent observation of T the

prior pdf. of @ is updated by means of

Bayes’ theorem:

2,8 5y, x2)= (06| 5,) - L(0]x)
= (01 )+ I /(x| 0)

x (8 ny, x) is called the posterior p.df. of

0, 2,081 7y, x) is called the non-normalized
posterior p.d.f.

II. Bayes'’ theorem for fuzzy
continuous parameter

Fuzziness may enter in two way: through
fuzziness of data and through fuzziness of
prior parameter.

We consider that Bayes’ theorem for fuzzy
data by introducing a fuzzy value posterior
pdf. and extend this approach to deal with
both sources of fuzziness.

Also we  will the

use notation,

x*=(%,,", %,) will denote a fuzzy sample,

7y a fuzzy parameter of prior, ¢ .(x)
and ¢ 70( 7y ) will denote their characterizing
or membership functions, (C(%),,a<(0,1]

(C(%),,a=(0,1]) will

corresponding @ —cut representations.

and denote the

If the only the data are fuzzy, then only
functional value of the likelihood function,

L(81x), is fuzzy, where the
value of the prior
Therefore the

denote by

functional 1S a precise

number. a—contours of the

non-normalized posterior g,( 8| 7,, x) are

related to the a—contours (L):(@) and

(L)YY( @) of the likelihood simple by
(g)50)=n(6l 5))- (L)5( ),
()X 0)=n(6] 2,)- (L)I().

Where the contours of the fuzzy valued
likelihood function are easy to determine or
not.

If x is a minimum rule fuzzy sample, then
a—cuts of the single data points and the a—

contours of the likelihood are given by
(DY) =min 5, L(81)= IT (£)E(O)
(2-1)
(YO =max o, 1(012) =TT (£)Y(0)
(2-2)
with
(FE(O)=min g F(x16),
(£)d(@)=max .. f(x|8). (2-3)
This result is of both practical and

theoretical importance. the practical importance
lies in the computational aspect that instead of
minimizing and maximizing the likelihood
function in the 7 —dimensional argument Z,
for a minimum rule fuzzy sample this 7 —
dimensional optimization problem is deduced to
the one dimensional problem of minimizing and
the pdf  f(x]89)

x€C( %;), This important property

maximizing over

For example, we assume that the stochastic

quantity x follows = an  exponential
distribution:
f(x|0)=0exp(— 0x) (2-4)
with unknown parameter 6#<R*. an
conjugate prior for @ is given by a gamma
density with parameter  7,= (v, B,):
7(8lvy, By) = Ay 6" 'exp(— B,6)(2-5)
0> Bo vy 0

Assume that n fuzzy observation X, are

206



Proceedings of KFIS Autumn Conference 2005 Volume 15, Number 2

available and they are combined by the
minimum rule to a fuzzy sample x.
To obtained the a—contours of the

non-normalized posterior we have to minimize
and maximize

f(x18) for fixed 8 over
xXeE C(f,') = [CL(E,')G, CU(E,'),,]

as f(x|0) is decreasing
function in the x the argument leading to the
mimimum and to the maximum, respectively,
simple are given by

(2-6)

for =1, ,n,

Ci (%), and C,(%,), Therefore we obtain

the following a—contours of the fuzzy

valued non-normalized posterior £,(8[ 7y, %):

(gn)ﬁ(0)=ﬁ%;5 grtnl. ’

exp(=(By+ 2 CkF),)0)
2-7

(£%0) =y 67"

exp(— (B, + gch(fi),,)e)
(2-8)

III. Hypotheses testing

We consider the case of testing a simple
hypotheses

Hy:0= 6,
against a alternative
Hl . 0 = 01

where 6 and @, preassigned constants.

W assume that H, and H, are mutually
exclusive and exhaustive hypotheses.

Let X = %X, -, Xp

x,= %, (X, ", Xn)

test statistics based upon two samples of N
observations, respectively.

By Bayes’ theorem, the posterior probability

and

denote  appropriate

of H, given the observation data X, and

for hypothesis H, from %, we have

7 ( 00' 70 x]) . 7( 0()' 7]0) . L(alxl)
(0, ny,x,)  a(0,] 7y)- L(O]xy)
(3-D
That is, the posterior odds ratio in favor of
H, is equal to the product of the prior odds
and the likelihood ratio.
If the posterior odds ratio exceeds unity, we
accept H,, otherwise, we reject H, in favor
of H,.

IV. Example

Two fuzzy samples were derived by taking
x(L, 7).

r; determining the

the simulated value fuzzy number
/; and
amount of fuzziness for the first fuzzy sample

are samller than the corresponding parameters
for the fuzzy sample.

The parameter

A Bayesian analysis was carried out with
the prior’'s parameters equal to vy=2, 3;=1.
For the fuzzy sample the fuzziness of the data
has a considerable impact on the
non-normalized posterior.

If we have random sample from population 1
as:

{ v
0.2 0.5
1.31 1.61
1.65 1.85
0.77 097
0.66 091
2.3 2.65
2.23 2.43
1.51 1.76
0.59 0.84
0.38 0.78

Also, we have another random sample from
population 2 as:
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0.2 0.9
0.91 1.71
1.35 2.3
0.52 1.27
0.46 1.21

19 2.85
2.03 2.73
1.31 1.96
0.19 1.14
0.18 0.98

From random sample 1, we have fuzzy

I, » fuzzy number -as;

g,,( 0| 0, 71 )
= (3.432E—- 09, 8.121E~-10, 1.396E—10)
(3-2)
From random sample 2, we have [/, r fuzzy
number as,

gn( 0l ”09 72)

= (3.581E—-08,8.833E—10, 1.713E—11)

(3-3)

Thus we have fuzzy number posterior odds
ratio as;

(0.005, 1.040, 200.336) (3-4)

Because of division process of two fuzzy
number, the right number of the fuzzy number
is divergence in the province of greater than
1. We will test the model with the modified
fuzzy number as;

(0.005, 1.040, 2.075) (3-5)
We accept hypothesis Hj, because the value

of center 1.04. is great than 1 in non fussy

case.
Also, for the fussy case, we accept the H,

when the area is greater than 1 and reject the
case when the area is less than 1.

Thus we accept the hypothesis H| for the

fuzzy posterior odds ratio degree

Number 2

_ _area(triangularABC) _
1 area( trinagularAEF) 0.5392
(3-6)
as seen in Figure.
E
0
C {D 12 11

I LI 200.33

005 1104 2075 6
[Figure]
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