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1. Introduction :
L
» Nonminimum-phase system
Zero-dynamics is unstable

Continuous time domain : some of finite zeros being located
in the LHP

Discrete time domain : some of finite zeros being located
outside of the unit circle.

» Control of nonminimum-phase system
Approximation of unstable zero to stable zero
Stable inversion
Pseudo-inverse based inversion

» lterative Learning Control
Find input iteratively which tracks the desired output
System model may be unknown

Mainly for the minimum-phase system
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1. Introduction

E
» Obijective of the research

» Control of nonminimum-phase system v
Inversion based on output-to-input mapping
Time reversal for maximum phase systems
Advanced time approach for nonminimum-phase systems

» Learning control of nonminimum phase systems
Control of uncertain nonminimum phase systems
Stable inverse mapping ‘
Simple learning structure
Generalized learning law
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2. Related Works

» Nonminimum-phase system

A dynamic system is nonminimum phase if there are some
unstable manifolds in the zero dynamics of the system. For linear
discrete time systems, this corresponds to some of finite zeros
being located outside of the unit circle.

» Stable and unstable manifolds

W*(0) = {z € ullde(z) = 0, as t — o0; ¢(z) € U, Vt >0}
W*(0) = {z € ull(z) = 0, as t = —o0; () €U, Vt <0}
U C R", ¢,(x) is the fiow of the dynamic system.
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2. Related Works
L
» Feedforward control of linear discrete-time systems

- Zero Phase Error Tracking Control

- Pole Zero Cancellation with Series Approximation

- Pole Zero Cancellation with Modified Series Approximation

— Approximation of unstable zero to stable zero

— Difficulty of analysis of output error due to approximation

— Sensitive to modeling uncertainties

— Exact model of the system must be given
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2. Related Works
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» Stable inversion method

Normal form using z = ®(z).

zl(i + 1) zg(i)
zo_1(i+1) = 2z5(i)
zo(i+1) = RE@E)+ Sn(d) + Ku(i)
n(i+1) = PE@)+Qnli)
Hera (i) = [241(i), <+ , 2], £6) = [2a(0), -+, 2 (D))"
~ Zero dynamics of the system (i + 1) = Qn(i)
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2. Related Works
PR SRS

» Stable inversion method

- Jordan form transformation
A +1) = PE@)+ Qi(s)

Qs O
0 Qu

Q; : all stable eigen values

where Q) =

Q.. : all unstable eigen values
— Solve forwards 7, (i + 1) = Qs (i) + Cs(3).
Solve backwards 7, (i + 1) = Qu s (3) + Cy (%)

~ Boundary condition : 77(—oc) = nj(00) = 0
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2. Related Works
S0 T T TSI

» Pseudo-inverse based inversion

~ Direct inverse :
o, N-1] = (Ja) " Yo,Nto-1) — Haz(0))
— Pseudo-inversion
up n-1) = (J130) (Yo N+o—1) — Haz(0))

- Pseudo-inversion for a given o

Upo,N-1] = (al + J;I;Ja)_lJa(y[a,N-}-a—l] — H,z(0))
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2. Related Works
b

» |LC using stable inversion method

e System equation

(t) f(z(®) + g(=(2)),z(0) =0
y(t) = h{xz(t))
e Basic Approach
~ Assume that the linearized model is known around (z, u) = (0, 0).

—~ Obtain input u for the linearized system.

— Find the solution of the nonlinear system using iteration.
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2. Related Works

E
» Stable inversion method

- Exact knowledge of the system dynamics
- Truncation error due to the time horizon
- Difficulty of the analysis of the output error
- All states must be known
» Pseudo-inverse based inversion
- Approximate solution
- Difficulty of the analysis of the output error
» Proposed Method
- Output to input mapping

- No truncation error in time interval

1
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2. Related Works

F
» Limitation of conventional schemes

- Require precise model or precise linearized model

- Truncation error or approximate solutions

- Calculation burden and sensitivity due to the input-to-state

mapping

- Difficulty in the analysis of output error

» Proposed Method

Control of nonminimum phase systems
Inversion based on output-to-input mapping
Advanced time approach

Learning control of nonminimum phase systems
Control of uncertain nonminimum phase systems
Simple learning structure
Generalized learning law
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3. Time Reversal for Nonminimum-Phase Systems

® System :

z(i+1) = Az(z)+ Bu(i)
yi) = Cali)
whereu € R, 2 = [z1,--- ,2,)]T € R, y e R!

o up ) =), wDT ya =6, yDIT
& Assumptions

{A3.1) The system is controllable and observable.

(A3.2) The matrix A is invertible.

(A3.3) B # 0in G(z) = i dtda

® UWg N-1] € Yn,N+n-1]

® Input-output relation ¥{,, N4n—1] = Hez(0) + Jeuyo n—1)
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3. Time Reversal for Nonminimum-Phase Systems

O OO e
e Lemma 3.1 : Nonsingularity of J,,, uniqueness and existence of uﬁ),N_u.
® Lemma 3.2 : Time reversal and the stability of the inverse mapping.
~ Time reversal : N(z) — N(z~!), N(2~') becomes minimum phase.
o Set y‘[iN_{_l’N+n__ 1] to appropriate constants and U{n N 4+n—2] = 0

K " — vas d —
o u(N — 1) = L@=ltneboay (Vo))

o u(N—2)= y“(N—-2+n)+~~-+a,.3£n(1\’—2)—;9n,1u(N—l)

o (%) is determined backwards.

e Time reversal :N(z) — N(z71).
.Bl»z"—1 + -+ .Bn - }an”‘l + -+ P
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3. Time Reversal for Nonminimum-Phase Systems
L]
® Input-output relations in conventional ILC

- o, N~1] ¢ Yio,N+o—1]: Yio,N+o—1] = HaZ(0) + Jaupo,n_1]
1. input update law :

w*H1(@) = uk (@) + 16+ 0) - "G + 0))
Uﬁﬂr.—u = “fo,z\'—l] + S(Yﬁr,N-}-v—-l] - on,N+a-11)

2. Convergence condition 7 — SJa]| < p <1
# Proposed method for linear maximum-phase systems

= U, N~1] = Yin,N4n-1]: Yin,N+n—1] = Hpz(0) + Jpup n_1)

1. ¥[n,N+n—1] = Ujp,N 1] is Stable

2. input update law :

k k d k
u[o‘f}iv..l] = Up N1 + S(y[n,N+n—-l] - Y{n,N+n—1])
d
3. uﬁ,,N,l} o d u{O.N_,]
4. Convergence condition ||I — SJp|| < p < 1

i KM
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4. ILC of Maximum-Phase Systems
L

® System:

(i+1) = f(=(d) + g(z(d)u()
y(6) = h(z(2))

o |LC with advanced output data
= Ujo,N~1] < ¥[n,N+n-1]
~ Yin,N+n-1] = F(z(0), up nv-1))
1. ¥in,N+n-1] —* Ujo,n-1) is stable
2. input update law :
“ﬁ)ﬁf—u = ufo,zv_n +S (Yﬁ.,N+n—1] -y f:;,N+n-1])

k d
3. Ujg n_1) 7 Upo,n-1
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4. ILC of Maximum-Phase Systems
E ]

e System :

z(i+1) = f(z(@)) + g(z(i))u()
y(&) = h(=z().

e |LC with advanced output data
= Ujo,N-1] € ¥[n,N+n—1]
- ¥Yn,N+n-1] = F(x(0), up n_1))
1. ¥in,N+n—-1) = Ujg,N-1] is stable
2. input update law :
“ﬁ)ﬁf-u = uﬁ),N-—l] +8(y Eiz,N+n—-1] - yfn,N—{-n—l])

k d
3. U y_1) ™ Ujg, N1

5. Advanced Time Approach for Nonminimum-Phase Systems
b
e System :

z(i+1) = Ax(i) + Bu(i)
y()) = Cz(3)
whereu € R,z = [z1,--- ,zp|T e R*, y e R!
o ug = {u(@), L u() T ya = @, v
® Minimum-phase system : @, N 1] ¢ ¥Yjo,N+o—1]

& Maximum-phase system : U, N 1] ¢ ¥in,N+n-1]

® Qo N-1] ¥ ¥Y[n,N+n-1]

e Input-outputrelation Y,y g N yotd—1] = H.z(0) + J.up -y ‘
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5. Advanced Time Approach for Nonminimum-Phase Systems
L

® Ujp,N-1] € Yio+d,N+o+d-1]

e Input-outputrelation Y, q Ntot+d—1] = Hex(0) + Jeup n_1j,

H, = [(H(I+I)Te s (HZ\"-{-([)T] ! s

Jiyr  Ja - 0
3. - de+2 :]d+1 e 0
Inta Inya-r 0 Jast

H, = CA°H-1 g, = cA°+-2B,

\:MU? 19 Think Different, KMU !

5. Advanced Time Approach for Nonminimum-Phase Systems
R

(A1) The system is stable, controllable and observable.
(A2) The matrix A is invertible.
(A3) 3, #0in (2).
(A4) The matrix J. is nonsingular.
o Theorem

The inverse mapping from yﬁr-}d,i\-‘-{-a‘u%d—-l] to u?O,N« 1 is stable for d = dj ‘
G(z)

u‘—l-G.;N+]_‘v

e Nt : minimum phase zeros of the sysfem, (;(z) : Maximum phase system

G() = it = 83 = B

K\M:i
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6. ILC of Nonminimum-Phase Systems

o input update law

K+l ok k
Wo N1 = Won-1] + € antopayy 0SdSn—0

k = ud _ ok

where €, 4 Niord-1] = Yio+d, N+otd—1] ~ Y[o+d.N+o+d=1]

- ifd = dy, where dj is the number of nonminimum phase zeros of the
system, the inverse mapping is stable.

- ifd = 0, itis equivalent to the conventional ILC based on the relative degree
e Theorem
The uncertain system (1) satisties (A1)—(A4). If the condition

I-SIf<p<l

holds, the input uko N~—1) COnverge to “{{).,N—ll as k — oc.
t 2 Think Different, KMU !

6. ILC of Nonminimum-Phase Systems

e System:

z(i+1) = f(z(i)) + glz(i))uli)
y(i) = h(z().
hd ytir+(1,.?\7+a+d—l] = F(2(0).up.n-1)

(A1’) The system (7) is stable. Also, the relative degree of the system (7) is o
and is well defined Y(x, u) € R**! with respect to u{i).

(A2’) Forthe system (7), ||yi£7+dJ\.+a+d” 11” < ¢, ¥N and ||x(0}|] < « for some
constants «¢; and ¢s.

(A3’) The linearized system (9) is stable, has d; nonminum-phase zeros and
satisfies the assumptions (A1)-(A4).

(A4’) Forany realizable output trajectory yif, AN tord 1] that correspondsto a
given initial condition x?(0}), F is a one-to-one and continuous mapping.

KL,
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6. ILC of Nonminimum-Phasse Systems

® Theorem

Let us assume that the system (7), the desired trajectory
and the initial condition satisfy (A1°)—(A4%). Let us setd =
dy, where dp is the number of nonminimum phase zeros.
Then the desired trajectory u‘[f),N_I] is bounded.

Input update law

K+l _ ok kod _
Uonoy = Won-1) + S € yniopayp 0SdSn—0

e Theorem

The system satisfies (A1’)-(A4’) and the system dynamics may not be
known completely. If the condition

M -S*35 < p <1, for allk

is satisfied, the input luf(),_,v_” converges to bounded “‘[iON-u ask — .

23 Think Different, KMU |
7. Simulation Results
L]
e System

z1(i+1) = z(i) + 0.1u(4)

z2i+1) = —7{(i) + z3(d)

z3(i+1) = 423(@) + (1 + sin(x2(8))?)u(s)

y(@) = z,(i) + 2.5x2(3) + x3(3)

Relative degree :1 Number of nonminimum phase zeros : 1

e Setting <1 = ¥Y.22 = ¥1.23 = I

2t + 1) 26 -26 =55 z1(i) 0 1
220 + 1) = 0 0 1 () 1+ 0 + | 0| u(@)
i+ 1) I -1 =25 z3(i) — sin®(z3(i)) 0
y(iy = 21(d).
k\u-,
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7. Simulation Results

® Stable Inversion Method
o Zero Dynamics

2i+1) | 0 1 R0 0
z3(i + 1) -1 =25 z3(1) y (i)

o Jordan form transformation

e e s  DPe(: -1
ni+1)=T"126+1)=Dnpi)+T J) — sin?(25(0)

o Picard lteration

(i) = 0
X5 ‘)
Mmsr (i) = (i — k{1
a1 () ;{ oli=ht [ y(k — 1) — sin?(—0.4472); + 0.89447%) ] }
KM
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7. Simulation Results
o Stable Inversion Method
_— — 0.04
02 . 0.035 ~
s \ 003 , \\\
y / . 0.025 K \
o /I Y 0.02 4 .
g / 5, 2 oos N\
g o1 / ‘\ g 001 Stable Inversion —— N
/ \, ol N
0.05 / N 0005
) / B Y oK 4
i Y : \ 2.005
LY S Stable Inversion M
oL : . = p R 5 10 15 20
4

Figure 2: Input using the stable inversion
Figure 1: Qutput using the stable inversion
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7. Simulation Results

e Proposed Method

o Model
n{i+1) = 1.2ry(i) + 0.223(¢)
2o(i+1) = —0.1r1(i) + x3(?)

23(i+1) = 0.daa(d) + u(i)
y(7) = x1(@) + 2.5x2(7) + x3(i)

o Input Update Law

k+1 N k_d
u[O.N—-l] = Ujo, N1 +5 €lo+do. N+o+dp—1]

oy 27 Think Different, KMU !

7. Simulation Results

o Proposed Method

0.035 N ]
0.03 / o \
0.025 / o . \
0.02 L S Wok=3 .. \
H g oo AR \\
% g AodR k=10 AN

o.m} a : - Y
0.005 / "'\. 4
1
o Y \/
0.005 4

©0.01 ——
0

Figure 5. Inputs using the proposed methed

Figure 4: Qutputs using the proposed method
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7. Simulation Results

o Comparison

0.005 : e . T
Ifx

0.004 - ’\ Stable Inversion ]
,l 3 Proposed method &k = 10

0.003 - ; “‘ \\ P/mp d method & =50 ... ]

YL AR | ]

% 0001 !\ \ §

2 A \

° ol \ ,,,,, e Nom e
0.001 /4
-0.002 | o / 1
-0.003 . - . _

o 5 10 15 20
i
Figure 3: Output error
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8. Conclusion and Future Work
L ]
» Conclusion |
Inversion based on output-to-input mapping
Advanced time approach for nonminimum-phase systems
Simple learning structure using input update law

Generalized learning law including both minimum-phase and
nonminimum phase systems

No requirement of the exact linearized model of the system
» Future work

Extension to learning scheme with feedback controller

Nonsingularity condition of Jc

To make the convergence condition less strict

Neural network / Fuzzy controller design
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