#1328 A& LSS =FA Vol. 32, No.2(1)

Distributed Kinetic Delaunay Triangulation
FeE° HAE oldY olAY
g=geried AxANE AueAFT
{yutai®, sunghee}@gclab.kaist.ackr, (hyonigi, jwlee}@nclab.kaist.ac.kr

Taewon Yoo’ Sunghee Choi Hyonik Lee Jinwon Lee
Division of Computer Science, Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology

Abstract
This paper proposes a distributed algorithm to maintain the Delaunay triangulation of moving points. We assume that
every point is a processor which can only communicate with the adjacent points connected by edges in the Delaunay
triangulation. The ‘topology changes of the Delaunay triangulation due to the movement of the points are updated
automatically by local operations of the points without any centralized processor or global information.

1. Introduction

Massively Multiplayer Online Games(MMOG) have become one
of the most important and popular Internet applications. Since
a MMOG player mainly interacts with adjacent players in a
virtual space, the player has to know which players are nearby.
Currently this proximity information in the virtual world is
given from the server. This is because traditionally MMOG has
client-server architecture. Therefore the overall scalability is
strictly limited by the capacity and computation power of the
server.

To overcome this limitation, peer-to-peer overlay network is
suggested as an alternative architecture for MMOG. On a
peer-to-peer environment, a node has to maintain the location
information of nearby players by itself. And the location
information has to be reconstructed dynamically because
proximity can be changed by the movement of players. The
Delaunay triangulation has been used for overlay network since
by definition it connects nearby points with edges. Though
there have been several algorithms to construct the Delaunay
triangulation locally for peer-to-peer applications, no paper has
addressed the problem of maintaining the Delaunay triangulation
of moving nodes directly in a distributed setting.

In this paper, we propose an algorithm to maintain the
distributed kinetic Delaunay triangulation. Here the term
distributed means the computation and maintenance of the
Delaunay triangulation is done locally by each point (or node)
of the triangulation. And the term kinetic means that points
(nodes) are allowed to move and the algorithm can handle the
topological changes according to the motion of points. To the
best of our knowledge, this is the first paper to address the
problem of maintaining Delaunay triangulation of continuously
moving points in a distributed setting.

2. Related Works

The Delaunay triangulation is a fundamental problem in
computational geometry and has been a major research topic in
the community. The kinetic Delaunay triangulation problem is
also studied but only in a centralized setting.

Roos{1] proposed a mechanism to construct and maintain

the Delaunay triangulations of moving points in 2D. They
store all the calculated next topological events of Delaunay
triangulations in a centralized queue, and then update the
triangulation according to the time sequence of the events.
Albers et al.[2] extend this for kinetic Delaunay triangulation in
general dimension.

In the system community, the problem of constructing 2D
Delaunay triangulations in a distributed way has been studied
for peer-to-peer applications. Liebeherr and Nahas[3] generate
Delaunay-based overlay network using angular feature in two
dimensional space. In [5], Simon et al. extend it to
d-dimensional space using in-hypersphere-test based on greedy
walk. Ohnish et al[4] construct the Delaunay triangulation
locally using flip operations. Though they remark that they can
handle movements of points, it is by using insertions and
deletdons of points. None of the works deals with the
continuous movement of points directly in a distributed

approach.

3. Backgrounds

In this section, we briefly introduce several definitions and
properties related to the Delaunay triangulation.

A triangulation of a vertex set V is a decomposition of the
convex hull of V into triangles by maximal set of
non-intersecting diagonals.

An edge is defined as Delaunay if it has any circumscribing
circle which contains no vertex of V.

The Delaunay triangulation D of V is defined as a
triangulation whose edges are all Delaunay edges.

We can compute the Delaunay triangulation D of V using a
local property of the Delaunay triangulation.

An edge e is Jocally Delaunay if

(1) e is a convex hull edge of T or

(2) e is an internal edge of T and the circumscribing circle
of an adjacent triangle of e does not contain the other
adjacent triangle of e

The following theorem guarantees that we can compute the
Delaunay triangulation of V by only maintaining every edge to
be locally Delaunay.

964

A|328] FAIEE LRI =FF Vol. 32, No.2(I)

Theorem 1 [6] A triangulation T whose edges are all Jocally
Delaunay is a Delaunay triangulation.

A locally Delaunay edge e’ is created from a non-locally
Delaunay edge e by flipping. Flipping an edge e means to
delete e and insert the other diagonal edge of quadrilateral
which is combined by two triangles adjacent to e The
following lemma shows that flipping produces a locally
Delaunay edge from a non-locally Delaunay edge.

Lemma 1 [6] Let e be an edge of a triangulation of V. Either
e is locally Delaunay, or e’ created by flipping e is Jocally
Delaunay.

We can compute the Delaunay triangulation of vertex set V
using lemma 1. The Delaunay triangulation D of a triangulation
T is obtained by flipping edge e that is not Delaunay until all
the edges are Delaunay[6]. This method is called flip algorithm
and has O(n®) computation complexity.

Roos[1] first solved the Delaunay triangulation of moving
points. He proved that only two kinds of topological changes of
the Delaunay triangulation occur according to the continucus
movement of the points. Those topological changes occur at the
moment of cocirculairty of four points or collinearity of three
consecutive convex hull points.

Here we call the first class of topological events as fip
events and the second class of topological events as collinear
events. To handle these topological events, Roos pre-computes
the event times of all the Delaunay triangulation edges and
store them in the SWAP tree according to the temporal order
of their event times. And a centralized event handler processes
the topological event with the smallest event time. Thereafter it
updates the SWAP tree since there are some edges whose event
time is affected by the previous topological changes.

4. Algorithm

In this section we describe the assumptions and our algorithm.
Our algorithm is based on Roos' approach but modified for a
distributed setting.

4.1 Assumptions
We introduce the following assumptions to make our approach
simple.

(1) Each node location and velocity
information of nodes which are connected by an edge.

(2) The clocks of nodes are synchronized.

(3) Every node moves in a bounded constant speed and
when it changes its direction and speed, it notifies its
adjacent nodes.

(4) Every node moves only in a triangle whose vertices are
three stationary nodes.

can query the

4.2 Data structures

To handle the topological events in distributed manner, each

node maintains two kinds of data structures:
® Adjacency List: Every node has the direct connection
with nodes which are connected by Delaunay edges. This
information is maintained using its own adjacency list.
Adjacency list is sorted by counter-clockwise order.

® Event Priority Queue: Every node has its own event
priority queue. The element of the queue consists of three
fields: the edge which is managed by the node, the event
time of that edge, and lock field(true or false). If the value
of the lock field is true, the node can not trigger the
corresponding event and waits until the lock is released.
The elements of the queue are sorted by temporal order of
the event time.

4.3 Algorithm

In our algorithm, the event of an edge e is handled by the
randomly chosen node v between two nodes incident to e We
define the node v as the event handler of e. The event handler
v of e firstly computes the event time of e and it handles the
topological change on that event time of e And v updates all
the event times of edges which are affected by that topological
change. When a node changes its velocity, it notifies its
adjacent nodes and the node and its neighbors recalculates the
event times and updates their event queues.

Now we will explain the event handling procedure.

By the assumption (4) which prevents the change of convex
hull, we do not need to handle the collinear events. So, we
only need to process flip events. The event handler of an edge
modifies the topology of the Delaunay triangulation due to
flipping and updates the event time of edges which are affected
by this flip event. Since a flip event of an edge destroys 4
quadrilaterals and creates new 4 quadrilaterals-see figure 1, it is
enough to re-compute the event times of 4 corresponding
diagonal edges. Then, it randomly selects the event handler of
newly created edge. The newly selected handler
re-computes the event time of the new edge and updates its
event priory queue. The following algorithm explains the whole
procedure of the flip event of edge pip; by its event handler p;.

event

(Notations)
Pip; : the edge between p; and p;
pi : the event handler of pip;
p«pi : the newly created edge by flipping pip;
PP quadrilateral which has pip; as one of its diagonals.

Algorithm Flip event handling

1. pi waits if the lock field of the event pip; is true.

2. p; sends the messages to pj, pr P to set the lock field of the
event of pipx, pPipl, PPw Pt true

3. pi sends the message to pj to remove p; from the adjacency
list of p;.

4. pi removes p; from its adjacency list.

5. pi pops the top element from its event priority queue.

6. pi sends the messages to Pj, Pw Pi to re-compute the event time
of pipx. PPy PP PP

7. pi randomly selects the event handler of pupi between px and
p.

8. The selected event handler computes the next flip event time
of pupr and inserts this new event in its event priority queue.
9. pi sends the messages to px and pi to insert each other in their

adjacency list.
10. pi sends the messages to pj, pr, P to set the lock field of the
event of pipx, Pipn PiPx. Pp1 false.

965

#3238 FAEEdE3] =83 Vol.32, No.2(I)

Figure 1. Flipping the edge pipy destroys 4 quadrilaterals-Apipjpi, Bpjpipx,
Cpipip. Dpipipr and creates 4 quadrilaterals-Apwpipi. Bpjpipx. Cpipupy
Dpipepr

4.4 The correctness of the algorithm

The correctness of our algorithm is basically based on that of
the centralized algorithm of Roos[1]. However in the distributed
processing environment, concurrent edge flipping may result in
the edge crossing problem which is illustrated in Figure 2. The
following lemma shows when exactly this problem takes place.

P

i

. P,
i i
Figure 2. Concurrent flipping adjacent edges can cause the edge
crossing problem.

Lemma 2 When an edge e is being flipped, the edge crossing
problem occurs only by the simultaneous flip events of edges of
the quadrilateral whose diagonal is e
Proof)

The proof consists of two parts.

Claim (1) The simultaneous flip events of edge e and an edge
of the quadrilateral whose diagonal is e always cause the edge
crossing problem.

Assume that pp; and pgp; in Figure 2 are being flipped
concurrently. It implies that pi pj Px. P Pm lie on the same
circle. Thus pentagon pipipjpmp: is convex. And flipping pip; and
pipj produce pypi and pipm, Tespectively. Since these two new
edges are diagonals of the convex pentagon which do not share
any vertex of that pentagon, they must intersect each other.
Claim (2) the simultaneous flip events of edge e and the edge
which is not an edge of the corresponding quadrilateral of e
does not cause the edge crossing problem.

Since these edges are the diagonals of two non-overlapping
quadrilaterals, their corresponding newly created edges do not
intersect each other.

Lemma 2 shows that we can avoid the edge crossing
problem induced by flipping edge e by preventing the flip
events of its corresponding quadrilateral edges only and that we
do not need to worry about the other edges. The steps 1, 2, 10
of our algorithm implement this using locks. Thus, the proposed
algorithm correctly maintains the topology of the Delaunay
triangulation under our assumptions.

5. Results

We simulated the distributed setting by implementing each node
as an object with its own data structure and procedure using
C++ and OpenGL. Our implementation takes the number of
points as input. The location, the moving direction and the
speed of each point are determined randomly. The simulation
shows that our algorithm changes gracefully the topology of the
Delaunay triangulation according to the linear motion of nodes
during the simulation.

Figure 3 Screen shot of our implementation
6. Future Works and Conclusion

In -this paper we proposed an algorithm to maintain the
distributed kinetic Delaunay triangulation. We also implemented
our algorithm. It can be used for the peer-to-peer adjacency
management of MMOG.

We conclude by remarking several open issues:
Load balancing: If a node handles a lot of edge flip events, it
would suffer from the event handling overheads. We want to
minimize the number of events that a node handles.
Delay: In real P2P overlay network environment, the message
exchanges between nodes may take quite a while due to delays.
This may cause inconsistency problems. We need to make our
algorithm more robust to the communication delays between
nodes. '
Fault-rolerance: Though insertions and deletions of nodes can be
handled using existing methods, nodes may crash without any
warning, in real peer-to-peer applications. It would be nice to
be able to handle these cases gracefully.

References

[1] Thomas Roos, "Voronoi Diagrams over dynamic scenes’, Discrete
Applied Mathematics 43 pages 243-259, 1993.

[2] Gerhard Albers, Leonidas J. Guibas, Joseph S.B. Mitchell, Thomas
Roos, "Voronoi Diagrmas of Moving Points’, 1995.

[3] Liebeherr, M. Nahas, “Application-layer multicasting with
Delaunay triangulation overlays’, Technical Report: CS-2001-26
IEEE Journal on Selected Areas in Communications, 2001.

[4) Masaaki Ohnishi, Ryo Nishide, Shinichi Ueshima, */ncremental
Construction of Delaunay Overlaid Network for Virrual
Collaborative Space, The third international Conference on
Creating, Connecting and Collaborating through Computing, 2005.

[5] Gwendal Simon, Moritz Steiner, Ernst Biersack, "Distributed
Dynamic Delaunay Triangulation in d-Dimensional Spaces’, 2005.

[6] Jonathan Richard Shewchuk, “Lecture Notes on Delaunay Mesh
Generation”, 1999.

966

