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Maximally repeated sub-patterns of a point set
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We answer a question raised by P. Brass on the number of maximally repeated sub-patterns in a
set of n points in R?Y. We show that this number, which was conjectured to be polynomial, is in fact

6(2?) in the worst case, regardless of the dimension d.

1. Introduction

Let S be a set of n points in K. A sub-pattern,
i.e. a subset, of § is repeated if it can be translated
to another subset of S. A sub-pattern P S S is
maximally repeated if for any subset @ such that
P < QS S there exists a translation that maps P to
a subset of § without mapping @ to a subset of S.
In other words, a pattern is maximally repeated if it
cannot be extended without losing at least one of its

OCCUITEnCes.

Maximally repeated sub-patterns (MRSP for short)
originated from the field of pattern matching to solve
the following problem: given two point sets X and
Y, can Y be translated to a subset of X? P.
Brass[Theorem 3 in [1]] gave an algon‘thrﬁ that
answer such queries in time ] Y|[logl X]) whose
preprocessing time depends on the number of distinct
MRSP of X, where two MRSP are distinct if they
are not equal up to a translation. A natural question
is thus to give a theoretical bound on this number of

MRSP in order to provide an upper bound on the
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time requirement of that algorithm. This number was
conjectured [[1] or page 267 in [2]] to be O(n?)
where d is the dimension in which the point set is
embedded.

In this note we show that the number of MRSP of

a set of m points is actually ©(2%) in the worst
case, which shows that finding sub-patterns via this
approach may lead to exponential running time in the
worst-case. Our proof is based on combinatorial
rather than geometrical properties of the point set,
which explains that the bound is independent of the

dimension d in which the points are considered.
2. Lower and Upper bounds

Let us ﬁrst introduce some terminology. Given
PcRY and t &€ RY, the translation of P by ¢t
denoted P+, is the set {z+t| £ € P}. A subset
P< § is a repeated sub-pattern if there exists a
t#0 such that P+t< S P is a
maximally repeated sub-pattern (MRSP) if,
addition, for any subset @ such that P Q& S
there exists a translation t such that P+tC S and
Q+t<Z S Two MRSP are distinct if they are not

translation

in
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equal up to a translation.

2.1. Lower bound

We build our example on a l—diménsional grid which
can, of course, be considered as embedded in R? for
any d = 1. Let k¥ be an integer, G, denotes the set
of integers {1, ..., k}and S = GyU (Gy+k+1), that
is two copies of G, separated by a gap of one point
at k+1.

Gy Gi+ (k+1)

¢ 4 606 0243 x 2200068400

Sk
29 1: Example for Lower Bound 2F 1

Lemma 1
. The set S, has 287! distinct MRSP.

Proof.
We show that any subset P G, is a MRSP by

arguing that for any point p* € S /P, one of the
translations that keeps P in S, sends p* either to
{k+ 1} or outside of S;. Indeed, let QS S, be a
proper superset of P and t€ Q/P. If t = k+2
then P+ (k+1) S S and Q+ (k+1) Z S,
It P+(k+1—t)C S,
@+ (k+1—1t) £ S,. This proves that any - subset

t< k then and

P < G, is a MRSP of S,. No translation can map a

subset of G, that contain 1 to another subset of G

that contains 1. Therefore, at least 27! of the
subsets of G are distinct MRSP. ¢

2..2 Upper bound

Let S={ay,...,a,} R? be a set of m points. We
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consider the set of translations T defined by
T=8~-58=(z—y| (zy) € §%

Both the points in S and the vectors in T are

real

numbers. Let A denote the family of all first

ordered lexicographically, as vectors of =
occurrences of subsets of S that are MRSP. By
‘‘first’’ we mean that a MRSP P is in 4 if and
only if no translation ¢ < 0 satisfies P+t £ S. That
is, we choose one representative of each equivalence
class of MRSP under translation. The following

function maps each pattern to its set of translations:

25_) 2T
P —{te T:P+tc §)

Forl <:i<j<n,let )
Aij {P (=3 A . {0;", GJ} [ PE {ai,..., a-}

7
be the set of all occurrences of MRSP spanning the

range (a; .., a;} and
Ty={te T:t>0,{a,0a} SN (S—1t)}

be the set of all non-negative translations compatible
with a; and a;. We can now prove our upper bound.

Lemma 2
A set of m points has at most 16 - 2% distinct
MRSP.

Proof.
Let P, and P, be MRSP such that

#(P1) =¢(P;). Then ¢(PLUP,)=¢(P)=¢(FP,)
which leads to P,UP,= P, since P, is a MRSP,
and P,UP,=P,, as P, is also a MRSP. Thus, ¢

two

defines an injection from A on the subsets of T. If
P e A then ¢(P) =

from A; on the subsets of T;. Hence, 4;< 2! %

Ty and ¢ induces an injection

If te T,;/{0} then t>0 and a;+t=a, with

y> j. Hence, | T;—{0}| < n—j. It follows that
|4l <2¢77—1 .

As any MRSP in Aij corresponds to a subset of
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{i+1,...,7—1}, we also have that
45 <2
Note that A; is empty for ¢=2 and Ay is a

singleton. We can now write

Al <1+ i i gmin(n—j,j=i=1)

i=1j=i+1
Splitting the sum at j = n-2|- L 4 1, we get
nti .
n 2 o n 2ty
JAl <1+42) ) 2 t=1+4+2)2°2
i=1 =i+l . i=1
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219 2. Bounding | Tl in 1-dimensional case;
the same reasoning holds in R?

thanks to the total ordering.



