SOFTWARE STREAMING TECHNOLOGY FOR TELEMETICS
APPLICATIONS

Jungsook Kim, Jihoon Choi, and Jungdan Choi

Telematics Research Division, ETRI.
Eoeun-dong 52, Yuseong-gu, Daejeon city, 305-806, KOREA(South)
{jungsook96, cjh, jdchoi}@etri.re kr, Tel: +82-42-860-1096, Fax: +82-42-860-4844

ABSTRACT:

The software streaming technology enables telematics software to be automatically updated through a wireless network.
When the software starts running, software streaming system inspects its version and then, automatically download latest
one. The software streaming system breaks the software into several pieces that are streamed to the user as needed. In
this way, software streaming system can improves the telematics application load time while updating the software
through wireless network. In our experiments, the application load time was reduced about 7 times compared to

downloading whole software at best case.

KEY WORDS: Software streaming, stream enabled software, virtual run time environments

1. INTRODUCTION

Extending the telematics services, telematics terminals
typically support various applications with different
characteristics. With limited storage resources, it may not
be possible to keep all features of the applications loaded
on telematics terminals. In fact, some software
components may never be needed. Thus, the terminals are
week in utilizing their storage resources effectively. In
addition to that, telematics applications are usually
installed and upgraded into telematics terminals with
active synch. However, active synch is unfeasible for
managing applications on the terminal built in a car. It’s
not possible to connect the terminal mounted on a vehicle
to PC. Furthermore, applications and their data will likely
to change over time, and perhaps remarkable in the case
of the map data of navigation applications. To make
matters worse, the vehicle mounted terminal and its
applications must work until scraping the car, namely, at
least 10 years.

In order to effectively repair and maintain telematics
software, it should be updated automatically through a
wireless network. Software streaming enables the
automatic update. When software starts to run, its version
is inspected. If it is stale, we download the latest software
as soon as eliminate the stale one. The software
transmitted to the client is a piece of the whole but not
entire. In other words, the software has been broken into
several pieces and only needed parts are transmitted on
demand. Immediately on downloading the first piece of
the software, it is executable. The software streaming
enables software to be updated through slow wireless
network while minimizing user perceived application load

time. While the application is running, additional parts of
the software can be downloaded in the background.
Moreover, software streaming effectively utilizes the
client storage resource by downloading only needed parts.

In this paper, we have introduced a new automatic
software update method using software streaming
technology. It improves the telematics application load
time while updating the sofiware through wireless
network. We implements the software streaming
technology on windows CE 4.1 and 4.2.

The rest of this paper is organized as follows: In
section 2, we explain out stream software system
composed of stream software generator, streaming client,
streaming server. In section 3, we provide performance
analysis of the streaming environments. Then, we
describes related work in the area of the software
streaming in the section 4. Finally, in section 5, we
conclude and discuss the future work.

2. DESIGN AND IMPLEMENTATION

We will introduce our telematics software streaming
system composed of stream software generator, streaming
server, and streaming client. We design our system fully
supports legacy applications. The stream software
generator converts the legacy software into stream
enabled software without any modification. The streaming
client is designed and implemented stream enabled
software to execute while legacy software is running.
Furthermore, any stream enabled software is concurrently
executable with any other stream enabled software. We
try to minimize network overhead in our system. The

-597-

local cache in the streaming client allows software blocks
to be reused. The streaming server is designed to be
scalable. We provide simple load balancer and several
container servers transmitting streaming software to the
streaming client. The container server is easily joined to
the streaming server system in real time.

Figure 1 describes service flow of our telematics
software streaming system. In our approach, stream
enabled software must be created before it can be
streamed to the client. As shown figure 1, the stream
software generator creates the stream enabled software
with binary image of legacy application complied from
application source code by a standard compiler. Once the
stream enabled software is generated, it is loaded to the
streaming server which effectively transmits a requested
software block as maintaining block index. The streaming
client easily starts running stream enabled software
through a streaming server’s Web interface. When the
software starts to run, its version is inspected. The
streaming client requests an initial piece of the latest
software as soon as eliminate the stale one if it is stale.
Additional software blocks are requests as the software
keep running. In this section, we first explain the say of
generating stream enabled software. We then describe our
streaming client and streaming server in detail.

___stream Server

Figure 1. Service flow of software streaming system

2.1 Stream software generator

The stream software generator is a tool that packages

and virtualizes legacy applications as network application

for real-time delivery. This tool makes the conversion
without modifying the application source code. The
software generator monitors and records all changes
during application installation. It analyzes which registry
setting, files, and environmental variables are modified or
added by the application. The stream software generator
uses this information to create a stream enabled virtual
application package.

In order to extract the information, we propose a
simple method that compares system image differences
during installation. Figure 2 shows the system state. State

A and B illustrate the system status before and after
install, respectively, and state C describes the application
itself.

[State B]

[State A] {State C}

unchaged files
unchaged register

changed files
changed register
changed envi i

added files
added register
added

variables,

variables

Figure 2. System state diagram

In our approach, each state is expressed with the
combination of a file tree and a register tree shown in
figure 3. Non-leaf nodes are the path to reaching files or
registers. Leaf node contains detail information about
files or register. For example, leaf node of the file tree
contains file creation time, modified time, and size. The
register tree’s leaf node maintains register type, key, and
value. We recognize the node modification with the
change of the detail information.

Figure 3. Tree structure representing each state

The trees of state C can be created from state A and
B’s trees as described in figure 4. Installing software
makes the tree of state B added new nodes, i.e., H, I, and
J, and changed node E to E'. Using depth first algorithm,
we generate the tree of state C. With the extracted
information about state C, we makes an information file
used to build application specific configurations and
virtual run time environment later.

(a) Tree of state A

(c) Tree of state C

(b) Tree of state B

Figure 4. The virtual application extraction mechanism
during installation

-598-

Finally, our stream software generator consecutively
breaks the aggregated files from state C down software
blocks sized of 4KB, same with page size of Windows
CE.Net. Then, it outputs a stream software pack file
containing the compressed data files of the sequenced
application and the information file for the application.

2.2 Streaming Client

Our stream enabled software is runnable within a
streaming client’s virtual run-time environments. In the
virtual run-time environment, the stream enabled software
executes in a same way that it was already installed. Our
streaming client allows any stream enabled software to
run side-by-side with any other one. That is, the streaming
client creates virtual run-time environments for each
software. The virtual run-time environment created by
one software cannot be seen by other softwares and thus,
several softwares are concurrently executable on the same
computer without any conflict. The streaming client
adopts a local cache which improves the reusability of
downloaded blocks. The local cache minimizes network
overhead, which is a key issue for stream enabled
software through wireless network.

Our streaming clients must be preinstalled at telematics
terminals before requesting stream enabled software to
the streaming server. Figure 5 shows the architecture of
the streaming client, which is composed of terminal
agents(TA), IO interceptor(IOT), virtual registry(VR),
virtual file system(VFS), cache manager(CM), and
network manger(NM). The followings are brief
descriptions on components.

® terminal agent. NM initializes virtual run-time
environment.

® Virtual registry. VR maintains software specific
registry information and handle it. We
implement the virtual registry using overlay
method rather than copying the entire registry.
The method efficiently handles the registry
information. Items in the real registry may be
read by the application as long as a virtual copy
of that item is not available. All application
writes to the registry are contained within its
virtual registry and not shared with other.

® /O interceptor. 10T intercepts and handles all
file IO requests between stream enabled software
and file system. IOT checks whether the IO
requests is for the file in the virtual file system or
windows native file system. According to the
results, IOT redirect the requests to the virtual
file system or pass it to the windows file system.

® Virtual file system. Virtual file system creates
same directory structures and empty files with

legacy application in a specific directory under C.

The created files are used for the local cache.
The IO interceptor handles all IO requests made

by software to files.

® Cache manager. CM manages local cache for
improving software block reusability. CM cache
reduces search time with index table .

® Network manager. NM takes care of all network
connection with the server.

Stream enable Stream enable Stream enable
software 1 software 2 T software n
] User mode

Terminal agent

Kemel mode

[Virtual registry]
Virtual file system

[1O interceptor
rotocol managerTL Cache manager Vinu?’ run time

Figure 5. Architecture of the streaming client

2.3 Streaming Server

The streaming server is designed and implemented to
be scalable. The streaming server transmits a software
block as requested, which induces main overhead, i.e.
network overhead, for the server. The server system
capacity is dependent to capacity of the both. In order to
support clients exceeding the capacity of the network card
and backbone, the server should be regionally distributed.
We design the server using distributed method as shown
in figure 6. Our streaming server is composed of several
container servers, a control server, and a database server.
The container servers may be deployed at several areas.
The load balancing between container servers are
processed at the control server. The server load is
distributed based on connection only one time at initially
connecting at a container server. A client keep connecting
with the container server until finishing a stream enabled
software. Thus, our streaming server system is feasible to .
flexibly extend or reduce its system capacity.

DB Server

€ontainer Server 1

Portal Server Control Server

Container Server n

Figure 6. Architecture of the streaming server

-599-

3. EXPERIMENTS

We evaluated the performance of the software
streaming system. The container server, portal server, and
the database server are running on a 2.4GHz CPU with
2GB memory and 20GB HDD. The container servers are
running on 1GHz Intel Pentium CPU with 2GB memory
and 19GB HDD. We deployed apache version 1.33 at the
portal server and control server, and MySql version
4.0.18 at the database server. We implemented our
streaming client at Samsung NEXIO-XP30 with PXA255
400MHz CPU, 64MB ROM , 128MB SDRAM, and
800*400 resolution. The NEXIO-XP30 worked on
windows CE.Net 4.1 and supported just Wireless
1an(802.11b).

Table 1 shows the experimental results of our system
deployed at NEXIO-XP30 terminal. We can start to run
the ZIOGolf2 with only 15% of the whole application.
The portion of requested application for starting it is
different from each other. The portion is depending on the
way of implanting the program.

Table 1. The application load time on NEXIO-XP30

Application | Total [Size of the | Time to run |Time to
size of | application |the start the
applica |to start it |application |application
tion at our |after at our
(XB) software downloading |software

streaming | whole streaming
system software system
.| (KB) (sec) (sec)

ZIOGolf2 | 4,598 720 _ 215 30

WordWise | 2,427 327 98 15

r

Casino 1,990 576 82 22

Gangi 1,942 1,236 93 60

Hunmin 1,901 ‘996 62 32

As shown the tablel, we can dramatically reduces the
application load time. Compared to downloading the
entire software, the software streaming method can load
the software about 7 times rapidly at best case.

4. RELATED WORKS

In Java applet implementation, the typical process of
downloading the entire program is eliminated. A Java
applet can be run without obtaining all of the classes used
by the applet. Java class files can be downloaded
ondemand from the server. If a Java class is not available
to the Java Virtual Machine (JVM) when an executing
applet attempts to invoke the class functionality, the JVM
may dynamically retrieve the class file from the server
[T1], [T2]. In theory, this method may work well for
small classes. The application load time should be
reduced, and the user should be able to interact with the
application rather quickly. In practice, however, Web
browsers make quite a few connections to retrieve class

files. HTTP/1.0, which is used by most Web servers [J1],
allows one request (e.g., for a class file) per connection.
Therefore, if many class files are needed, many requests
must be made, resulting in large communication overhead.
The number of requests (thus, connections) made can be
reduced by bundling and compressing class files into one
file [E1], which in turn unfortunately can increase the
application load time. While the transition to persistent
connections in HTTP/1.1 may improve the performance
for the applet having many class files by allowing
requests and responses to be pipelined [E2], the server
does not send the subsequent java class files without a
request from the client. The JVM does not request class
files not yet referenced by a class. Therefore, when a class
is missing, the Java applet must be suspended. For a
complex application, the class size may be large, which
requires a long download time. As a result, the
application load time is also long, a problem avoided by
the block streaming method which we will describe in the
next section.

5. CONCLUSION

Software streaming technology allows telematics
terminals to start executing an application while the
application is being transmitted. We presented a method
for transmitting the stream enabled software from the
server to be executed on the streaming client. Our
streaming method can lower load-time delay, bandwidth
utilization and memory usages. We verified our streaming
method using Samsung NEXIO terminal

6. REFERENCES

[J1} E. Nahum, T. Barzilai and D. D. Kandlur, 1999,
Performance Issues in WWW Servers, IEEE/ACM
Transactions on Networking, vol. 10, no. 1, PP- 2-11.

[T2] J. Meyer and T. Downing, 1997, Java Virtual
Machine, California: O’Reilly & Associates, Inc., pp. 44-
45.

[T1] T. Lindholm and F. Yellin, 1999, The Java Virtual
Machine Specification, 2nd ed., Massachusetts: Addison-
Wesley Publishing Company, pp. 158-161.

[E1] P. S. Wang, 1999, Java with Object-Oriented
Programming and World Wide Web Applications,
California: PWS Publishing, pp.193-194.

[E2] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L.
Masinter, P. Leach, and T. Bemners-Lee, June 1999,
Hypertext Transport Protocol — HTTP/1.1, RFC 2616,
The Internet Engineering Task Force.

-600-

