MOVING OBJECT JOIN ALGORITHMS USING TB-TREE

Jai-Ho Lee, Seong-Ho Lee, Ju-Wan Kim

LBS Research Team, Telematics Research Group, ETRI
{snoopy, sholee, juwan}@etri.re.kr

ABSTRACT:

The need for LBS (Location Based Services) is increasing due to the widespread of mobile computing devices and positioning
technologies. In LBS, there are many applications that need to manage moving objects (e.g. taxies, persons).

The moving object join operation is to make pairs with spatio-temporal attribute for two sets in the moving object database system.
It is import and complicated operation. And processing time increases by geometric progression with numbers of moving objects.
Therefore efficient methods of spatio-temporal join is essential to moving object database system.

In this paper, we apply spatial join methods to moving objects join. We propose two kind of join methods with TB-Tree that
preserves trajectories of moving objects. One is depth first traversal spatio-temporal join and another is breadth-first traversal spatio-
temporal join. We show results of performance test with sample data sets which are created by moving object generator tool.

KEY WORDS: Moving Objects, join, TB-tree

1. INTRODUCTION

Many researchers have been studying moving object
database system which manages moving objects such as
vehicle on road or soldier on the battlefield. Technologies
of moving object database are applied various field for
example LBS(Location Baseed Service) or Telematics. The
technology of Moving objects database which manages
effectively moving objects getting more and more
important.

We divided Research for moving objects into two parts.
One is moving objects data model and query language.
The other is index for moving objects. In this paper, we
considered the mo ving point(MPoint)[4] among moving
objects, because our research oriented base engine for
LBS applications. We focus on query and join algorithm
for past trajectory.

The spatio-temporal join operation is to make pairs with
spatio-temporal attribute for two sets. It is an important
type of query for multiple scanning in moving databases.
It is a sample query of spatio-temporal join : “Find all pairs
of friends which distance of between two friends had
been smaller than ten meter in yesterday.”

Because the spatio-temporal join requires multiple
scanning, it needs large disk I/O and CPU time. Until now
studying of join for moving object was in defect.

We can process join operation more effective, if two
" sets which are target of join operation have spatio-
temporal indexes. In the paper, we consider that all two
sets have spatio-temporal index. We use the TB-tree
among past spatio-temporal indexes. First we overview

spatial join algorithm developed formerly, and describe
how to extend it to spatio-temporal join.

2. RELATED WORKS

We classify spatial join algorithm using two spatial
indexes into depth-first traversal R-tree spatial join,
breadth-first traversal Retree spatial join and transform-
space view based spatial join.

The depth-first spatial join algorithm finds pairs of leaf
node overlapping each other through depth-first
traversing. The basic idea is to use the property that
directory rectangles from minimum bounding box of ther
data rectangles in the corresponding subtrees. Thus, if
the rectangles of two directory entries B and Es do not
have a common intersection, there will be no pair (rectr,
rects) of intersecting data rectangles where rectr is in the
subtree of Er and rects is in the subtree of Es. Otherwise,
there might be a pair of intersecting data rectangles in the
corresponding sub trees. And local plane sweeping and
pinning methods are used in order to preventing several
reading to same nodes. But because heuristic methods do
not consider access order of whole nodes participated in
join operation and interest only access order of subtrees
whose one pair of non-leaf nodes has common
intersection, it’s defect is that it can’t find global optimum.

The breadth-first spatial join algorithm store pair of
nodes have a common intersection in 1JI(intermediate join
index) through breadth-first searching. In 1JI, since access
order of whole node is considered, global optimal join
sequences can be created. But if numbers of node pairs

-309-

have a common intersection store 1JI, size of 1JI increase
rapidly and there is a remarkable drop in performance in
contrast to depth-first traversal R-tree spatial join.

The transform-space view based spatial join order leaf
nodes of one R-tree with spatial adjacency, and process
region query one by one on other R-tree using ordered
leaf nodes. Nodes accessed in previous query processing
can be used to the highest degree in next query
processing. That improves usage of buffer. Ordering leaf
nodes of R-tree is achieved by space filling curve. Cost of
ordering can be minimized if index is used when it is
ordered. This method is proposed recent and become
generally known that it shows best performance among
join algorithms. But we need extension' because it can
only be applied in spatial index.

3. DEPTH-FIRST TB-TREE JOINS

The depth-first TB-Tree join algorithms is extended
from R-tree join algorithm.

Figure 1. Structure of TB-Tree

~ Figure 1 is a structure of TB-tree. The TB-tree discretely
extracts moving object location, represents two
continuous locations of extracted moving objects as line
segment, and represents set of connected line segments
as trajectory. It is an access method that strictly preserves
trajectories such that a leaf node only contains segments
belonging to the same trajectory.

The basic algorithm of spatio-temporal join for TB-tree

uses a characteristic of TB-tree strurecture that entries in.

nodes are sorted by time and MBB like cube. Axises of
cube consist of X axis, Y axis and T(time) axis. If the
MBBs of two node entrires Er and Es do not have a
common intersection, there will be no pair (MBBr, MBBs).
Otherwise there might be a pair of intersecting data MBBs
in the corresponding subtrees. In the following
subsections we assume that both trees are of the sam

height. o

SpatioTemporatdoin1(R. S : TB_Node)
of R is equal height of S *)
SortedintersectionTest(R,S, Seq);
Forl =1 To Seq.legth Do
(Er, Es) = Seqll]:
if(Both R and S is a leaf page)
output(Er,Es) '
Else
ReadPage(Er.rrn);ReadPage(Es.rrn)
SpatioTemporaldoin1(Er.rrn, Es,rin)
End
End
End
%%Bt.edlntersectionTest(Rseq, Sseq: Sequence of

(* height

var output : sequence of pair of

MBB);
output = null;
I=1j=1; .
0o While(| <= Rseq.Length and j <= Sseq.Length)

If Rseq[l].StartTime < Sseqll].StartTime Then
InternalLoop(Rseqll], j, Sseq, output)
I=i+1;

Else
InternalLoop(Sseqll], !, Rseq, output)
J=J+1;

End

End
End

STJ1(SpatioTemporalJoinl) presents first approach
based depth-first traversal approach. The TB-tree has the
structual charateristic that all entries are sorted by time.
The SortedIntersectionTest function is applied plance-
sweep method for intersection operation using this
characteristic. It is unnecessary to sort by one axix,
because nodes were already sorted. This can reduce cost.

Additionally, the local plane-sweep order with pinning
method is a optimal method which reduce CPU-time and
I0-time.

We restrict the search space of the join. In algorithm
SpatioTemporalJoinl, each entry of the one node is
checked for the join condition using the plane sweep
against all entries of the other node. But before all entries
of R is compared all entries of S, each entries of R is
checked having a common intersection with S. each
entries of S also is checked having a common intersection
with R. This process can reduce considerably comparison
number.

p

X

Figure 2. Restriction of search area.

-310-

An example is illustrated in Figure. 2. When algorithm
SpatioTemporalJoinl performs the plane sweep, 4
segments in R area and 4 segments in S area are
participated. But new algorithm SpatioTemporalJoin2 are
required 3 segments in R area and 3 segments in S area.
Therefore, number of comparison required in order to
compute the join condition is reduced. The modified
algorithm is specified as follows.

SpatioTemporaldoin2{ R, S : Node,
mbb : cube_Parallelepiped)
R={Ei| (Eie R) and (Ei.mbb ~ mbb <> null)
S={Ei| (Eie S) and { Ei.mbb "~ mbb <> null)
SortedintersectionTest({ R,S, Seq):
For | =1 To Seq.legth Do
(Er, Es) = Seqli}:
if(Both R and S is a leaf page)
output {Er,Es)
Else
ReadPage(Er.ref);ReadPage(Es.ref)
SpatioTemporaldoin2(Er.rrn, €s,1rn, Er.mbb
~ Es.mbb)
End
End
End

We apply “local plane-sweep order with pinning”
method to TB-tree joins. We determine a pair (Er,Es) of
entries with respect to the local plane sweep order. After
the corresponding subtree Er.rrn and Es.rmn, we compute
degree of the cubes of both entries. The degree of an
cube of entry E, short degree(E.cube) is given by the
number of intersection between cube E.cube and the
cubes which belong to entries of the other tree not
processed util now. we pin the page in the buffer whose
corresponding cube has maximal degree. The spatio-
temporal join is performed on the pinned page with ail
other pages. Then we determine the next pair of entries
using the local plane-sweep order again. In example of
Figure 3, we obtain degree(R1)=0 and degree(S2)=2. Thus,
the read schedule is <R1, S2, R4, R3, S1, S2>.

S ——

|Vl

| (= . /J[w0

t

Figure 3. Example of spatio-temporal join.
We call the corresponding join algorihm
SpatioTemoralJoin3 that reduce to repeat accesses for
same page.

SpatioTemporaldoin3(R, S Node, mbb
Cube_Parallelepiped)

R={Ei|(Eie R) and (Ei.mbb * mbb <> null } }

S={Ei|(Eie S)and (Ei.mbb " mbb <> null) }

SortedintersectionTest(R,S, Seq):

Do
(Er, Es) = Seq(0]:
if(Both R and S is a leaf page)
output(€Er,Es)
Else
ReadPage(Er.rrn) ReadPage(Es.itn)
SpatioTemporalJoin(Er.rrn, Es,rrn, Er.mbb
€s.mbb)
End
Seq.Remove(0);
DegR = Degree(Er); DegS = Degree(Es);

If(DegR = 0 and DegS =0)
/] go to first of loop
Else If{ DegR >= DegS)
SeqgintersectR = { (Ex,Ey) | (Ex.Ey) e Seq
and (Er = Ex) or (Er = Ey) }
For | = 1 To SegalintersectR.length Do
(Ex, Ey) = SeqintersectRIl}; ,
SpatioTemporalJoin3{ £x.1rn, Ey.rn, Ex.mbb
~ Ey.mbb)
Seq.Remove(Ex,Ey)
End
Else
SeqlntersectS = { (Ex,Ey) | (Ex,Ey) € Seg
and (€s = €x) or (Es = Ey) }
For | = 1 To SeaqlntersectS.iength Do
(Ex, Ey) = SeaintersectSl:
SpatioTemporalJoin3(Ex.rrn, Ey.rrn, Ex.mbb
~ Ey.mbb)
Seq.Remove(Ex,Ey }:
End
End
While(Seq is not Empty)
End

4. BREADTH-FIRST TB-TREE JOINS

Breadth-first R-tree join algorithms also extend to
breath-first TB-tree joins. This method was proposed in
order to optimize global. Since depth-first traversal
algorithm is based on heuristic, it only optimize local.

STJ4(SpatioTemporalJoind) is a bread-first TB-tree join
algorithm. It uses data structure which called a
intermediate join index : v

First, for two root nodes, pairs of node which satisfy
join condition are stored LJI[0] by calling
SortedIntersectionTest function. Next as it goes down to
child nodes, it find next pairs using pairs stored in DI[i].
Therefore it considers globally pair of nodes.

-311-

SpatioTemporalJoind(R, S : Node)
// R.,S are two TB-trees, hR= hS
// 1JI[i] intermediate join index at level i

Idl = null;
1JI[0] = SortedIntersectionTest(R,S):
Int i=0;

While(i < hR-1 do)
foreach <r_node,s_node> in WI[i] Do
WIfi+1] = DI{i+1]U
SortedintersectionTest(r_node,s _node)
End
=it
End)
output 1JI[i]
End

5. COMPARIONS OF PERPORMANCE

We take two sets of moving object traejctory for spatio-
temporal join with TB-tree. One is TB-tree R, the other is
TB-tree S. We will experiment with CPU prcoessing time
and 1/O processing time by spatio-temporal join between

R and S. Like performance test for spatial join, to check .

the join condition in case of spatio-temporal join is far
more expensive. Therefore, a good measure for
performance consists of both, the number of disk
accesses and the number of comparison.

The 1/O-time is measured in the number of disk
accesses required for perfoming the join. The CPU-time of
a spatio-temporal join is measured in the number of
comparions. Comparis on is to check the join condition, i.e.
whether two MBB(minimum Bounding Box)s intersect or
two trajectories intersects.

It is very difficult to get the real data for test of spatio-
temporal join. So we use two moving object data set that
generated by City Simulator among moving objects data
genertors. Two data sets have different options when
those are generating. But those are same attribute that a
thousand of moving objects report a thousand of location.
The Table 1 shows properties of TB-tree R and S with
diverse page sizes.

Table 1. Properties of TB-Tree R and S

Pag TB-Tree R, S

e M e A A
size =0l e OioIE =
1KB 16 5 68,273 1,009,000
2KB 33 3 31,970 1,009,000
4KB 67 3 16,245 1,009,000
8KB 136 2 8,060 1,009,000

Table 2 reports the result for the number of comparison
for both SpatioTemporalloinl and SpatioTemporalloin2.
The results show improvement in the number of
comparison.

Table 2. Properties of TB-Tree R and S

nge ST STJ2 Perfgrmanc
size e gain

1KB 195,573,208 155,644,663 13
2KB 102,352,608 88,991,603 1.2
4KB 70,735,540 57,201,341 1.2
8KB 72,216,669 47,681,498 15

The Table 3 reports the result for the number of disk
access for SpatioTemporalJoinl, SpatioTemporalJoin2 and

SpatioTemporalJoin3.
improvement in the number of disk access.

The

results

show a

huge

Table 3. Properties of TB-Tree R and S

Page - STJY, Performance
size STJ2 STJ3 gain
1KB 2,126,230 1,219,160 1.7
2KB 839,466 512,915 1.6
4KB 719,142 427,169 1.6
8KB 684,342 387,041 1.7

6. CONCLUSION

The moving object database need a efficient join
operation because it requires a large number of disk /O
and CPU time. But, until now, research about spatio-
temporal join is insufficient.

We studied spatio-temporal join using TB-tree. We
applied techniques of spatial join to spatio-temporal join.
We showed depth-first traversal TB-tree joins and
breadth-first traversal TB-tree joins and result of
performance comparison.)

Since volume of moving object data is generally huge,
a research about optimal join algorithms is required.

References

Dieter Pfoser, Christian S. Jensen, Yannis Theodoridis:
Novel Approaches in Query Processing for Moving
Object Trajectories. VLDB 2000: 395-406

Brinkhoff , Hans-Peter Kriegel , Bernhard Seeger, Efficient
processing of spatial joins using R-trees, Proceedings of
the 1993 ACM SIGMOD international conference on
Management of data, p.237-246, May 25-28, 1993,
Washington, D.C., United States

Farshad Fotouhi, Sakti Pramanik: Optimal Secondary
Storage Access Sequence for Performing Relational Join.
IEEE Trans. Knowl. Data Eng. 1(3): 318-328 (1989)

- Martin Erwig, Ralf Hartmut Giiting, Markus Schneider,

Michalis’ Vazirgiannis: Spatio-Temporal Data Types: An
Approach to Modeling and Querying Moving Objects in
Databases. Geolnformatica 3(3): 269-296 (1999)

-312-

