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ABSTRACT:

As the Ubiquitous generation approaches, the importance of the sensor data processing is growing. The data
approximation scheme, one of the data processing methods, can be the key of sensor data processing, for it is related
not only to the lifetime of sensors but also to the size of the storage. In this paper, we propose the Harmonic Wavelet
transform which can minimize the relative error for given sensor data. Harmonic Wavelets use the harmonic mean as a
representative which is the minimum point of the maximum relative error between two data values. In addition,
Harmonic Wavelets retain the relative errors as wavelet coefficients so we can select proper wavelet coefficients that
reduce the relative error more easily. We also adapt the greedy algorithm for local optimization to reduce the time
complexity. Experimental results show the performance and the scalability of Harmonic Wavelets for sensor data.

1. INTRODUCTION
1.1 Motivation

As the Ubiquitous generation approaches, the uses of
sensors are increasing. It means how to manipulate a
large number of sensor data can be an important issue.
One of these researches on this issue, the data
approximation may suggest the effective way of sensor
data processing. It is because by reducing the size of the
transmission packet data, the lifetime of sensors can be
extended and the efficiency of the storage also can be
improved.

The definition of the approximation is to get the
representation that is close enough to be useful for given
memory bound. And historically, sampling, histogram
and wavelets have been studied as approximation
schemes. Among these schemes, are wavelets well-
known for the effectiveness of their decomposition in
reducing large amounts of data to compact data synopsis.
And recent work has demonstrated the applicability and
scalability of wavelets for sensor data.

Wavelets use the greedy mechanism by approximating
the several data values to their representative value.
Given that the original data is the highest resolution data,
we can get the lower resolution data by replacing the
original data values with their representative value. So
there can be an error in approximated data, and moreover,
which representative value we select instead of original
data values determines the = performance of the
approximation scheme.

In this paper, we propose Harmonic wavelet transform

which can minimize the relative error for given sensor
data. Harmonic wavelets replace two data values with

their harmonic mean at each decomposition step and
retain the relative error as a wavelet coefficient. As we
will explain later, the harmonic mean is the minimum
point of the maximum relative error between two data
values. So Harmonic wavelets can minimize the relative
errors generated at each decomposition step and we can
select proper wavelet coefficients that reduce the relative
error more easily.

1.2 Our Contributions

Previous works are based on Haar wavelet transform
which focuses on' the absolute error minimization
problem. However, previous works have attempted to
minimize the relative error with the Haar wavelet
transform. So, it is natural that a new wavelet transform
focusing on the relative error is needed. Harmonic
wavelets can be the solution for this problem.

Harmonic wavelets improved the performance and the
time complexity. By using the harmonic mean instead of
the arithmetic mean, we could reduce the maximum
relative error about 10~30% compared to the previous
works. And by adapting greedy algorithm for local
optimization, we could reduce the time complexity down
to O(NBlog B) where N is the length of data and B is

the given memory bound.

The remainder of this paper is organized as follows.
Section 2 provides related works on approximation
schemes. And then, we will introduce the main body of
this paper, Harmonic wavelets, in Section 3. Section 4
shows the performance of Harmonic wavelets with
experimental results. Finally, several concluding remarks
will be given in Section 5.
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2. RELATED WORKS

Various methods have been proposed to approximate
large amounts of data. However, the majority of the
proposed methods can be classified into sampling,
histograms and wavelets [1].

Sampling-based techniques use random samples as
synopsis for large data sets, but have the limitation in the
combination of uniform random samples. Histogram-
based techniques use statistical information and provide
higher-quality approximations compared to sampling.
But histogram-based approaches are faced with
difficulties when dealing with the high-dimensional data
sets. Wavelet-based techniques transform original data
into a small number of compact data synopsis and recent
studies have demonstrated the applicability of wavelets to
the approximation of sensor data avoiding the high
construction costs and storage overheads [1, 2, 3].

Approximation schemes based on wavelets are
extended to minimize the [” error. Several studies have
shown that Haar wavelet is useful for [? error metric [4].
However, recently, it is pointed out that Haar wavelet
synopsis with the L’ error minimization cannot guarantee
the error bound of individual data value. To solve this
problem, a recent research suggested the probabilistic
wavelet coefficient selection, and after that, the
deterministic selection [2, 3].

However, the time complexity of this algorithm is not
low enough to manipulate the large amount of data.
Another limitation of this algorithm is in the nature of
Haar wavelets. As Haar wavelets focus on the
minimization of the absolute error, the performance of
this algorithm on the side of relative error is not good as
we expect,

3. HARMONIC WAVELET TRANSFORM

In this section, we propose the Harmonic wavelet
transform for the relative error minimization. In section
3.1, we will deal with the overview of the Haar wavelet
transform and its limitations. Section 3.2 provides the
decomposition and reconstruction of the Harmonic
wavelet transform. And then we introduce Greedy
algorithm in section 3.3.

3.1 Overview of the Haar Wavelet Transform

The basics of the Haar wavelet decomposition are in
the use of the pairwise decomposition. Given data X =
(x,,x,) whose length is 2, the Haar wavelet transform

uses the arithmetic mean that is defined by (x, + x,)/2
and the difference between x, and the arithmetic mean

for the data decomposition that is also defined by
(x, —x,)/2 . Figure 1 shows the Haar wavelet transform

for the data of length 2.

X +x . .
—=—1 (arithmetic mean)

|
X . X3

"1—;"—2 (difference

Figure 1. Basics of the Haar wavelet transform

Using this Haar wavelet basics, we can get the Haar
wavelet transform for the data 4={1 3 10 6] as shown in
table 1. The Haar wavelet decomposition can be regarded
as a series of multi-level operations for the arithmetic
mean and the difference.

Table 1. Example of Haar wavelet decomposition

resolution arithmetic means detail coefficients
2 [13106] -
1 [ 2 8] [-1 2]
0 [ 5 1 [ -3 ]

Given that the resolution 2 is the original data, we can
get the low resolution data by replacing pairwise data
values with their arithmetic mean in each resolution step.
For example, data [2 8] in resolution 1 are obtained by
taking the arithmetic means of [1 3] and [10 6] in
resolution 2. Also, detail coefficients [-1 2] are the

- differences made between the first value of each pair in

resolution 2, which is 1 and 10, and the arithmetic means
of each pair, which is {2 8]. This procedure is continued
until the overall arithmetic mean is obtained. And then,
Haar wavelets retain the overall arithmetic value
followed by the detail coefficients in the order of
increasing resolution. At this example, the Haar wavelet
transform W, of the data 4 canbe [5 -3 -1 2].

Figure 2. Reconstruction of data 4 with an error tree

An error tree is helpful to reconstruct the original data
A from the Haar wavelet transform #, as shown in

Figure 2-(a). The root node of an error tree is the overall
arithmetic mean and internal nodes are detailed
coefficients in the Haar wavelet transform - Given an
error Tree T, there exists a path from root node to a leaf

node, which is the original data value. If the subpath is to
go to the left from the nodew , then add the value of the
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nodey . On the contrary, if the subpath is to go to the
right, then subtract the value of the node. Figure 2-(b)
shows the reconstruction of data A4 without the
coefficient -1.

Haar wavelets, however, suffer from limitations on the
side of the relative error minimization. For example, the
detailed coefficient -1 yields absolute errors from original
data values as shown in Figure 2-(b). It means Haar
wavelet coefficients are related to the absolute error.
Another limitation of the Haar wavelet transform is in the
selection of the representative. As we will explain later,
the arithmetic mean is the minimum point of the
maximum absolute error at each data value but not the
maximum relative error. It means the approximation
using Haar wavelets will be problematic on the side of
relative error metrics.

3.2 Harmonic Wavelet Transform

As a solution to these limitations on the side of relative
€ITOoT, We propose a new wavelet transform.

3.2.1 Problem Definition: In this paper, we will
minimize the maximum relative error from the subset of
the wavelet transform for given memory bound as shown
in Figure 3.

(Input) For given sensor data 4 whose lengthis N,
(Output) get the subset /¥, ' from the wavelet transform ¥ ,
where the maximum relative error is minimized.

. . | di '—di |
Maximum Relative Error = m’a.x W
i
(d, is the i" value of the original data and d,' is the i
value of the approximated data) '

Figure 3. Problem Definition

3.2.2 Harmonic Mean: Harmonic wavelets minimize
the relative error by replacing two data values with their
harmonic mean. We will explain how the harmonic mean
can be the minimum point of the maximum relative error
between two data values in this subsection.

A 2
x y o M =
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Figure 4. Relative errors for the selection of r

Given two values x and y , Figure 4-(a) shows the
relative errors generated at x and y each denoted by

RE, and RE, when they are replaced with the value of r.

(For brevity, we assume that the value of x is less than
that of y.) Then, we can get the maximum relative error

between RE, and RE, denoted by MRE .

If we define these relative errors as the function of r,
the maximum relative error function MRE(r) can be

obtained as the combination of two error functions,
denoted by max{RE, (r), RE,(r)} - And the graph in Figure

4-(b) illustrates the function of MRE(r) as the value of r
is varied from x toy. As describe in Figure 4-(b), the
function MRE(r) has the minimum value when the
functions, RE,(r) and RE,(r) » have the same value. In

other words, the maximum relative error is minimized
when the value of r is' 2xy/(x+y) which is the

harmonic mean of x and y. So the harmonic mean is the
minimum point of the maximum relative error between
two data values.

3.2.3 Harmonic wavelet decomposition: As mentioned
previously, Harmonic wavelets transform two original
data values to their harmonic mean and the relative error
at each decomposition step. The basics of the Harmonic
wavelet transform are similar to the Haar wavelet
transform.

The Harmonic wavelet decomposition also can be a
series of multi-level operation for the harmonic mean and
the relative error. This procedure is continued until the
overall harmonic mean is obtained. Table 2 shows the
Harmonic wavelet transform for the data 4=[1 3 10 6].

Table 2. Example of Harmonic wavelet decomposition

resolution harmonic means detail coefficients
2 [ 1 3 10 6 -
1 [ 15 7.5 ] [ -05 0.25]
0 [ 25 ] [ -0.66 ]

Like the Haar wavelet decomposition, we can get the
low resolution data by replacing pairwise data values
with their harmonic mean. For example data [1.5 7.5] in
resolution 1 are obtained by taking the harmonic mean of
pairs [1 3] and [10 6] in resolution 2. And detailed
coefficients [-0.5 0.25] are the relative errors made from
the first value of each pair. This Harmonic wavelet
decomposition is finished when the overall harmonic
mean, the value of 2.5, is obtained. Finally, we can get
the Harmonic wavelet transform W, = [2.5 -0.66 -0.5

0.25] for the data 4 .

3.3 Greedy Algorithm: DP algorithm for selecting
optimal synopsis needs O(N?B) space and O(N*BlogB)
time[3]. So the efficienicy of DP algorithm will be
reduced as the size of data is increased. In this subsection,
we propose the greedy algorithm reducing the time
complexity to O(NBlogB) - This greedy algorithm is
based on the error tree consisting of root node which is
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the overall harmonic mean and intemal nodes which are
the detailed coefficients as shown in Figure 5. The
difference from previous error trees is that the value of
leaf node indicates the current relative error. So, the
maximum relative error can be obtained by sending up
the maximum relative error at each subtree from leaf
node. The value of 1.34 is the maximum relative error for
example, in Figure 5.

overall
harmonic mean

maximum
relative error

detailed
coefficients

selected coefficient I::I unselected coefficient

Figure 5. Greedy Algorithm

Given the maximum relative error, we can retrace the
path generating the maximum relative error as illustrated
with the polygon in Figure 5. By selecting the most
reducible coefficient in the path, we can minimize the
maximum relative error. At this example, 0.5 is the most
reducible coefficient in the path [3.5, 0.2, 0.5, 0.3]. The
details of calculations are omitted for the limitation of

paper.
4. EXPERIMENTAL RESULTS

As an experimental data, we use the Cover Type data
supported by National Forest Service. This data is
composed of 581,102 numbers of values and each value
is in the range of 0 and 255. Figure 6 shows the
experimental results of harmonic wavelets with other
algorithms.
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Figure 6 Experimental results for given memory bound

Harmonic optimal algorithm shows the best
performance including this result, which outperforms
Haar optimal algorithm by 30%. However, these two

algorithms are not adequate to manipulate a large amount
of sensor data for their high time complexity.
Surpnisingly, Harmonic greedy algorithm obtains the
almost same results with Harmonic optimal algorithm as
shown in Figure 6. It means that Harmonic greedy
algorithm is more useful in a circumstance where the
response time is more important than the accuracy like
sensor network. So we can conclude that Harmonic
greedy algorithm is suitable to handle a large amount of
sensor data. In addition, we can also make certain that the
Harmonic wavelet-based algorithms approximate more
compactly than Haar wavelet-based algorithms on the
side of the relative error.

5. CONCLUSION

As the importance of the sensor data processing is
increased, the interest of approximation schemes is also
raised. Wavelets, one of approximation schemes, are well
known for the effectiveness of the data compaction. And
it is pointed out that wavelet synopsis with the 1? error
minimization cannot guarantee the individual error bound.
As a solution to this problem, we proposed the Harmonic
wavelet transform on the side of the relative error. By
using the harmonic mean, we could reduce the maximum
relative error, and by adapting greedy algorithm, we
could improve the time complexity. Experimental results
confirmed the performance of the Harmonic wavelet
transform compared to previous works.
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