Infineum Trends 2005 Power Transmission Fluids

Mr. Tim Hutchings

(Infineum Corp.)

Infineum Trends 2005

KSTLE Tim Hutchings/Oct, 2005

© Copyright INFINEUM INTERNATIONAL LIMITED 2005

Passenger Car Motor Oils WE LOVE CHANGE, WE HATE CHANGE!

•

- Change creates an opportunity to add new value
- But current balance between development costs and "payback time" is unsustainable
- OEM "wants" translate to new formulating challenges

	North America	Western Europe	Asia Pacific	Latin America	Rest of World	Total
Top Tier (0Ws / 5Ws)	1.125	245	 80	- 100 og 0000. - 10 og 100 og 1	30	1.490
Mid Tier (10Ws / 15Ws)	4 400	670	980	135	390	eller sommer. Les daltes in
Bottom Tier	1,480		unione Rouser, politic e		a Augusta (1961) August (1961)	3,655
(all other) Total	240 2.845	80 995	1,680 2,740	705	660 ; 1,080	3,220 8.365

Source: Kline & Company

© Copyright INFTREUM INTERNATIONAL LIMITED 2005. All rights reserved.

Passenger Car motor Oils GF-4 API SM and beyond

- · GF-4 considerably more expensive, delay in introduction
- First commercial use of GF-4 in 2004 in North America
- Followed by API SM, licensable after November 2004
- SM has no max %P nor %S limits
- Unclear if lack of chemical limits will impact emissions systems or warranties
- · Introduction of High Mileage, start-up, specialist SUV oil
- · Value perceived and customer willing to pay
- · Factory fill and service fill becoming competitive

Copyright INFINEUM INTERNATIONAL LIMITED 2005

Passenger Car motor Oils What's next, after GF-4/ SM/ ACEA -04

- ILSAC GF-5 with OEM requirements
 - > backward compatibility no PC Diesel
 - > Black sludge, turbo protection, aeration control, cam chain wear
- European specifications and OEM requirements
 - > Most OEM's have their own specifications
 - > Clear and growing fragmentation driven by diverging OEM needs
 - > Fragmentation leads to complexity
 - > Growing interest in partnerships between OEM's and global fluid suppliers

Copyright INFINEUM INTERNATIONAL LIMITED 2005

Passenger Car motor Oils Euro IV –DPF's and new ACEA specifications

- Almost 50% of new Car sales in Europe are Diesel
- To meet Euro IV and durability drove need for DPF's and Mid SAPS
- New ACEA 2004 "C" specifications combine A's and B's
- From November 1, 2004 all new ACEA claims must be against -04
- BMW, VW, Daimler Chrysler issued lower SAPS specifications in 2005 (Opel expected)
 - > Low SAPS VW 504 00 and 570 00 define a new quality level
 - > Includes DPF and RNT tests

Copyright INFINEUM INTERNATIONAL LIMITED 2005

Passenger Car Motor Oils SUMMARY OF KEY TRENDS IN JAPAN

- 2003 domestic vehicle sales were 5.8 M units (+0.6%)
 - > Sales of Japanese vehicles are increasing faster in US, Europe and Asia Pacific particularly China
- ILSAC GF-4 and API SM will be introduced in 2005
 Market for lighter grades is expanding
- Some new LEVs meet or exceed 2010 fuel economy targets
 Early compliance has tax incentives
- New technologies are enhancing worldwide sales
 - > Expanded hybrid systems
 - > Common-rail and higher-pressure fuel injection systems
 - > Passenger cars with diesel particulate filters (DPF)

© Copyright INFINEUM INTERNATIONAL LIMITED 2005. All rights reserved.

Passenger Car Motor Oils CREATING VALUE TO IMPROVE PROFITABILITY

- How can we as an industry get consumers to recognize additional value from the new generation of lubricants?
- New specifications such as GF-4 improve the quality of the products but do not create new value
 - > Effectively raises the bar on most if not all products
- What do consumers really want out of lubricants?
- There are crankcase products for which the consumer is willing to pay a premium.
 - > Perceive additional value beyond meeting standard claims

© Copyright INFINEUM INTERNATIONAL LIMITED 2005. All rights reserved.

Heavy Duty Diesel Chemical Restrictions PC-10 All new tests Licensable by 2007 SAPS Detergents Basestocks SAPS Antioxidants Antiwear · 2007 emissions limits NOx current 2.5 g/bhph -→ 0.25 PM current 0.1 g/bhph → 0.01 · Requires exhaust aftertreatment Copyright INFINEUM INTERNATIONAL LIMITED 2005

15% Noack

1.5% SASH

CI-4 Formulation Space

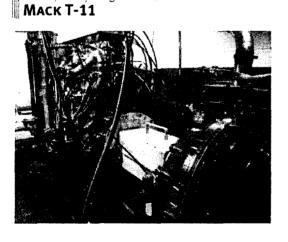
0.14% Phosphorus

0.8% Sulfur

13% Noack

1.00% SASH

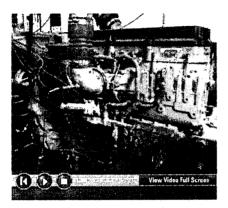
PC-10 Formulation Space


0.12% Phosphorus

0.4% Sulfur

© Copyright INFINE UM INTERNATIONAL LIMITED 2006. All rights reserved.

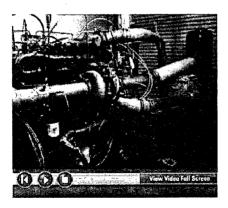
Heavy Duty Engine Oils



- Measures soot / viscosity control in an EGR environment
- Needs ACC code acceptance

E-Copyright INFINEUM INTERNATIONAL LIMITED 2005, All rights reserved.

Heavy Duty Engine Oils
CATERPILLAR C-13



- Full ACERT® emissions controls
- · Piston deposits
- Oil consumption
- Precision and BOI Matrix Running

O Copyright INFINEUM INTERNATIONAL LIMITED 2005. All rights-reserved.

Heavy Duty Engine Oils CUMMINS ISM

- Replacement for M11-EGR test with new hardware
- Valve train wear
- * Sludge
- " Filter plugging
- Tentatively approved for PC-10

O Copyright INFINEUM INTERNATIONAL LIMITED 2005, All rights reserved

Heavy Duty Engine Oils
Cummins ISB

- 5.9 liter high volume production
- Valve train wear with mushroom flat tappet cam follower

© Copyright INFINEUM INTERNATIONAL LIMITED 2005. All rights reserved.

Heavy Duty Engine Oils LIMITS COMPARISON

United States		Europe	A CAMPAGE AND A
2002 / 2004 Limits		2005 Limits	
NO _x	PM	NO _x	PM
3.4	0.14	3.5	0.02
2007-2009 Limits		2008 Limits	
NO _x	PM	NO _x	PM
1.6	0.014	2.0	0.02
2010 Limits			
NOx	PM		
0.27	0.014		

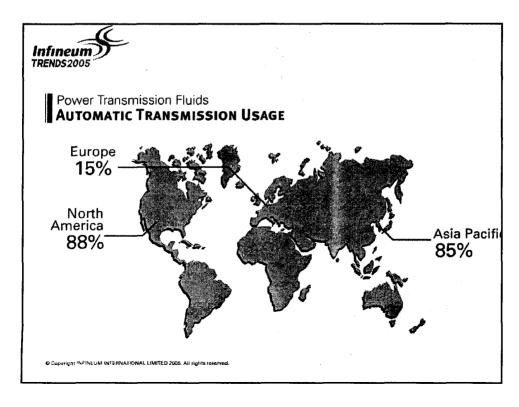
@ Copyright At MicOM INTERNATIONAL LIMITED 2008. All rights reserved.

Heavy Duty Engine Oils 2010 NO_x LIMIT

2007-2009 _____ 1.6 G/KW-H → ²⁰¹⁰ 0.27 G/KW-H

May Require NO_x Reduction Catalyst

Additional Chemical Restrictions?


PC-11?

© Committee ENFINEUM INTERNATIONAL LIMITED 2005, All violes inserved

Power transmission fluids

KSTLE Tim Hutchings/Oct, 2005

© Copyright INFINEUM INTERNATIONAL LIMITED 2005

Power Transmission Fluids

AUTO INDUSTRY DRIVERS - TRANSMISSION IMPROVEMENTS

- Emissions Compliance
- · Better Fuel Economy
- Improved Driveability

- · More Gears ---- No Gears (CVT)
 - > Better Fuel Economy
 - > Better Acceleration
 - > Smoother Driveability

Copyright INFINEUM INTERNATIONAL LIMITED 2005

Power Transmission Fluids

AUTOMATED MANUAL TRANSMISSIONS: DCT

- Pro: No torque limitation
- Con: More difficult technology
- ODI: Every 60K Kilometers

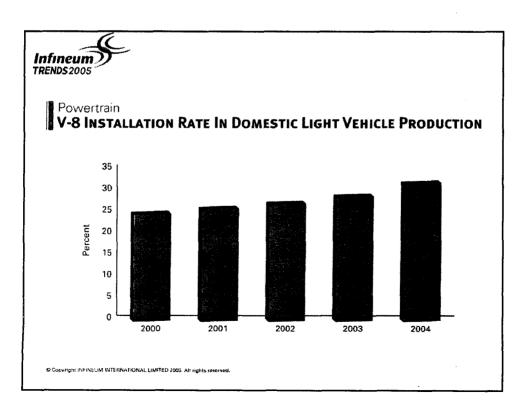
Next Step Advancement: Fluid with Real Fill-For-Life Capabilities

BLENDERS' CHALLENGE

- Small volume lots: blending/packaging/distribut
- · Blend in-house versus buy finished fluids

© Copyright INFINEUM INTERNATIONAL LIMITED 2005. All rights reserved.

Powertrain HYBRID VEHICLES



Toyota Ford Nissan VW Porsche

General Motors DaimlerChrysler

- 2004 U.S. Sales = 86K Units
- Total U.S. Light Vehicle Market ~ 17 million units
- DaimlerChrysler Hemi Engine Capacity = 480K Units (Increasing to 520K Units in 2006)

© Copyright INFINEUM INTERNATIONAL LIMITED 2005

Powertrain HYBRID FUEL SAVINGS

20,000 Miles/Year

30 MPG ---- 25% Improvement ---- 37.5 MPG

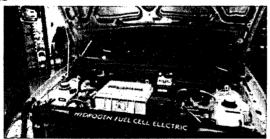
Savings 134 Gallons

667 Gallons

533 Gallons

18 MPG ---25% Improvement ----22.5 MPG

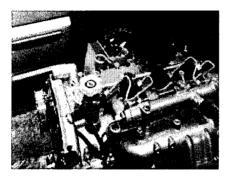
Savings 222 Gallons


1111 Gallons

889 Gallons

© Copyright INFINEUM INTERNATIONAL LIMITED 2006, All rights reserved.

Powertrain FUEL CELLS



- General Motors plans profitable commercial sales by 2010
- Most optimistic projection calls for 50M vehicles by 2030
- Requires a \$20 billion investment in infrastructure

Copyright INFINEUM INTERNATIONAL LIMITED 2005

Powertrain **DIESELS**

• U.S. Light Duty Trucks

514K Units

Volkswagen

31K Units

Heavy Duty Trucks

250K Units

Total

795K Units

© Copyright INFINEUM INTERNATIONAL LIMITED 2005

Conclusions

- Trends 2005
- · "Change"
- · Low viscosity, high cost and value
- · Rapid expensive redevelopments
- New transmissions (auto, DCT, CVT)
- New combustion technology
- · Someone changed the game?
- How are the local OEM's to compete

© Copyright INFINEUM INTERNATIONAL LIMITED 2005