[CoxFe1.x/Pt] 다층박막에서 결정구조와 자기적 특성연구

김미선¹, 이진용¹, 이상석^{1,2}, 김선욱², 황도근^{1,2}, 이장로²
¹ 상지대학교 대학원 기능성전자소재학과, 원주, 220-702
² 상지대학교 이공과대학 컴퓨터전자물리학과, 원주, 220-702
³ 숙명여자대학교 자연과학대학 물리학과, 서울, 140-742

Crystalline Structure and Magnetic Characteristics in [Co_xFe_{1-x}/Pt] Multilayers

MiSun Kim¹, JinYong Lee¹, SangSuk Lee^{1,2}, SunWook Kim², DoGuwn Hwang^{1,2}, and JangRoh Rhee³

Dept. of Functional Electronic Materials, Graduation, Sangji University, Wonju 220-702

² Dept. of Computer & Electronic Physics, College of Science & Engineering, Sangji University

³ Dept. of Physics, College of Natural Science, Sookmyung Women's University, Seoul 140-742

1. Introduction

Co/Pt multilayers with large perpendicular magnetic anisotropy (PMA) and enhanced Kerr rotation have received much attention in both basic research and application in high-density magnetic and magneto-optical (MO) recording. Compared with the RE-TM alloys currently used in commercial MO disks, the Co/Pt multilayers are attractive for their superior corrosion resistance and large Kerr rotations at short wavelength[1,2].

Due to the increasing demand of huge capacity storage devices and with the longitudinal recording media nearing an end due to the super-paramagnetic effect arising from thermal instability of recorded bits, perpendicular magnetic media with high magnetic anisotropy is very promising to solve such issues. $L1_0$ ordered FePt with face-centered tetragonal structure attracted much attention due to its high magneto-crystalline anisotropy constant, $K_u = 7 \times 10^7 \text{ erg/cm}$. However, high temperature of 600 °C and above is required for phase transformation from soft magnetic face centered cubic (fcc) to hard magnetic face centered tetragonal (fct) phase either during deposition or post-deposition annealing[3].

Hence it is important to understand how atomic composition affects the magnetic and structural properties of alloy Co_{1-x}Fe_x/Pt multilayers, which is the purpose of the present work.

2. Experiments

Films with the structure of glass/Ta/Pt/[Co_{1-x}Fe_x/Pt] multilayers were produced by ion beam sputtering in a home-made UHV-IBD (ion beam deposition) sputtering system. Typical chamber base pressure is better than 6.0×10^{-9} Torr. Ar gas with 99.99% purity was used as working gas pressure with 3.0×10^4 Torr. The Ta underlayer and Pt thickness were fixed at 20 Å and 5 Å, respectively. The Co_{1-x}Fe_x layer and Pt layer thicknesses were 5 Å and 10 Å, respectively. The atomic compositions of Co_{1-x}Fe_x layer were x = 0, 0.1, 0.25, and 1, which are determined by four targets with Co, Co₉₀Fe₁₀, Co₇₅Fe₂₅, and Fe. The substrate of Corning glass (7905) was set to room temperature with as-grown state. The magnetic properties were analysed using the extraordinary Hall-voltage amplitude (EHA) and the structural properties the X-ray diffractometer (XRD) using Cu-K₀ radiation.

3. Results and discussion

Fig. 1 (a) shows the XRD spectra of the $[Co(t_{co})/Pt(10 \text{ Å})]_5$ multilayers, As t_{co} increases, the

fundamental peak of the multilayer (indicated as Pt(111) peak ($2\Theta = 40^{\circ}$) in Fig. 1(a)) decreases dominantly. In addition to, the XRD spectra don't show clear satellite peaks like Co/Pt(111) (located at between $2\Theta = 41^{\circ}$ and 42° .

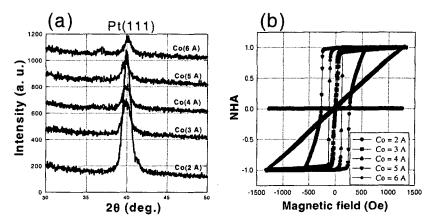


Fig. 1. (a) X-ray diffraction spectra and (b) NHA hysteresis loops of $[Co(t_{co})/Pt(10 \text{ Å})]_5$ multilayers.

Fig. 1 (b) shows the NHA (normalized Hall-voltage amplitude) curves obtained by measurement EHA of Ta(20 Å)/Pt(5 Å)/[Co(t_{co})/Pt(8 Å)]₅ multilayers as a function of thickness of Co layer. As Co layer thickness increases up to 5 Å, the perpendicular coercive field H_c increases 250 Oe. However, when Co layer thickness is 6 Å, PMA changes to in-plane magnetic anisotropy.

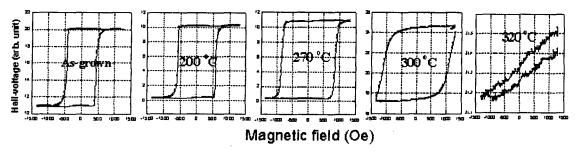


Fig. 2. EHA curves of Ta(20 Å)/Pt(5 Å)/[Co(5 Å)/Pt(6 Å)]₅ multilayer as a function of the annealing temperature.

Fig. 2 shows the EHA curves of $Ta(20 \text{ Å})/Pt(5 \text{ Å})/[Co(5 \text{ Å})/Pt(6 \text{ Å})]_5$ multilayer as a function of the annealing temperature. As increasing an annealing temperature up to 300 °C, the sample was slightly changed from PMA to in-plane and the magnetic property was vanished above 320 °C due to inter-diffusion between Co and Pt layer interface.

We will compare and discuss the experimental results of the other atomic compositions (x = 0.1, 0.25, and 1) of $Co_{1-x}Fe_x$ layers.

References

- [1] J. C. A. Huang et al., J. Magn. Magn. Mater. 239, 326-328 (2002).
- [2] F. Carcia et al., J. Appl. Phys. 93, 8397-8399 (2003).
- [3] B. C. Lim et al., J. Magn. Magn. Mater. 271, 159-164 (2004).