카이스퀘어 분석과 아이템기반 협력적 여과를 이용한 타겟마케팅 기법

Target Marketing Method on Specific Item Using Chi-Square Analysis and Item-based Collaborative Filtering

  • 김완섭 (숭실대학교 컴퓨터학과 인공지능연구실) ;
  • 이수원 (숭실대학교 컴퓨터학과 인공지능연구실)
  • 발행 : 2005.07.01

초록

온라인 및 오프라인 상에서 추천시스템에 대한 요구가 커지고 있으며 이에 관련해 않은 연구가 이루어지고 있다. 추천시스템은 마케팅 활용의 관점에서 목표 상품에 대한 반응 가능성이 높은 고객군을 추천하는 타겟마케팅 추천시스템과 고객 개인별로 구매 가능성이 높은 상품을 추천하는 개인화 추천시스템으로 구분할 수 있다. 지금까지의 추천시스템에 관한 연구는 대부분 개인화 추천시스템의 효율 향상에 목표를 두고 있다. 그러나 기업의 타겟마케팅에 대한 요구를 적절히 지원하지 못하고 있어 타겟마케팅에 대한 연구가 필요하다. 본 연구에서는 상품별 구매 패턴을 이용하는 프로파일 기반 추천 방법을 제안하고 이 방법과 기존의 협력적 추천 방법을 결합하여 특정 상품에 반응 가능성이 높은 고객을 추천하는 방법을 제안한다. 프로파일 기반 추천에서는 카이스퀘어 검정을 사용하여 상품별로 구매 패턴에 영향을 미치는 요인을 추출하고 이를 이용하여 특징 고객군을 선별하여 전체 고객군과 특징 고객과의 엔트로피(Entropy)의 변이 정도를 예측값으로 사용한다. 실험결과, 프로파일 기반 추천과 협력적 추천을 결합하여 추천하는 방법은 한 가지 방법을 사용할 때 보다 좋은 추천 정확도를 나타내었다.

키워드