Optimal Release times of a Software Cost Model

with Consideration of Various Costs

Chong Hyung Lee

Division of Information Technology, Konyang University,
Nonsan 320-711, KOREA
Kyu Beom Jang

Department of Statistics, Hallym University,
Chunchon 200-702, KOREA
Dong Ho Park
Department of Statistics, Hallym University,
Chunchon 200-702, KOREA

Abstract

Software system which is essential in operating the computer has gradually become an
indispensable element in many aspects of our daily lives and an important factor in numerous
systems. In recent years, software cost sometimes exceeds the cost of maintaining the
hardware system. In addition to the cost necessary to develop the new software system and
to maintain the system, the penalty costs incurred due to software failures are even more
significant. In this paper, a cost model incorporating the warranty cost, debugging costto
remove each fault detected in the software system, and delivery delay cost is developed. A
software reliability model based on non-homogeneous Poisson process(NHPP) is established
and the optimal software release policies to minimize the expected total software cost are
discussed. Numerical examples are provided to illustrate the results.

1. Introduction

The breakdown of a computer system,
caused by software faults, may result in
serious damages in so many situations.
Thus, the improvement of software reliability
is one of the key issues in developing the

modern software products. In fact, the
software reliability 18 an important
characteristic measuring the quality of

software as a taken-for—granted quality. It
is defined as the probability of no
occurrence of software failures during a
certain period under some specified
conditions. A software failure is defined as
an unacceptable departure from normal
program operation cased by a software fault
latent in the software. Although the software
system is debugged during its testing phase
before it is released to the user, it is in
general impossible to release a fault-free

software product. Thus, the problem of
determining the best possible software
release time with respect to its cost,
reliability and other relevant factors is quite
critical to the software developer. If the
testing period is too short, the software
development cost is saved, but the software
reliability may suffer while being operated
by the users and the repair costs that is
incurred by the software failure may be
increasing. On the other hand, if the testing
period is too long, then the software
reliability can be improved, but the
debugging cost of the software also
increases. Therefore, various optimal
software release policies which determine the
best possible release time satisfying several
desirable requirements have been developed
and proposed in the literature.

Goel and Okumoto (1979) proposed a
software reliability growth model based on

—251 -

NHPP and Yamada, Tokuno and Osaki
(1992) and Pham (1996) developed several
types of NHPP models which assume the
imperfect debugging environments. By
incorporating the software cost structure into
the software reliability growth model,
Yamada and Osaki (1985) discussed the
optimal software release policies which
minimize the software operating cost under
the constraints with regard to a software
reliability requirement. Yun and Bai (1990),
Pham (1996) and Lee, Nam and Park (2002)
also considered the situation when the
software life cycle is a unknown constant
and derived a cost model assuming a
random life cycle as well as the penalty cost
model with consideration of the delayed
delivery of the software system.

In this paper, we present the mathematical
expressions to evaluate the expected cost of
operating the software based on NHPP
model. The proposed cost model herein
includes the cost to carry out testing, the
cost of removing each fault detected in the
software system, and the delivery delay cost.
Section 2 gives the notations and necessary
assumptions. In Section 3, the software cost
model including the warranty cost and
delivery delay cost is proposed and the
optimal software release policy is discussed
in Section 4. Numerical results are presented
for illustrative purposes in Section 5.

2. Notations and assumptions

2.1 Notations

ci software test cost per unit time
cy(cy) cost of fault removal per unit
time during testing(warranty)
period.

N(?) number of faults detected up to

time ¢ m(H= E[N()]

t optimal testing period.
Y. random variable representing time
' to remove the [th fault during
testing period.
1574 random variable representing time

to remove the Ith fault during
warranty period.

ty, length of warranty period

T random variable representing the
scheduled software delivery time

e (t) cost incurred due to the delivery
14
delay by !
C.(t) cost of type j, j = 12,34,
J

Cc@) = ch (1)

2.2 Assumptions

1. The cost of fault removals during the
testing period is proportional to the total
time needed to remove all the faults detected
during this period.

2. The cost of fault removals during the
warranty period is proportional to the total
time needed to remove all the faults detected
in the time interval [¢, ¢+ ty].

3. It takes a certain length of time to
remove each fault during the testing and
warranty period and it is assumed that the
time needed to remove each fault follows a
right-truncated exponential distribution and
does not exceed the maximum time to
remove a fault,

4. If the testing takes longer than T which

is set to meet the delivery schedule of a
software system, an additional cost is
incurred for the delay until the actual
software release time t. It is assumed that
Ts has a cumulative distribution function

G(#) with G(0)=0 and irgG(t)ZI.

3. Software cost model

Under’ the assumptions given in Section
2.2, it is possible to establish a software
cost model in terms of the following costs:
testing cost, fault removal costs during the
testing and warranty period, delivery delay

cost, and our model is based on
Goel-Okumoto NHPP model. The
Goel-Okumoto model assumes that the

number of faults detected at time ¢ is
proportional to the number of faults
remaining at that time in the software. This
means that the probability of a software
failure due to fault is constant. The expected

-252 -

number of faults to be detected by time ¢,
m(t), can be obtained as follows:

m(t) = a(l- e_b’)’
where @ is the expected total number of
faults that exist in a software before testing

and b is the fault detection rate per fault.
The corresponding four expected costs can
be evaluated as follows:

1. Cost for testing
EC/(t)=ct
2. Cost of fault removal during testing
period
N
ECz(t) = E{CZ * 2[Yl]
¢, EIM9] - E(Y)]

cyrm(f) - uy

where 1y, which denotes the expectation of

i

random variable Y, is the expected time
needed to remove a fault during the testing
period.

3. Cost of fault removal during warranty

period, :
N(t+ tp)
ECy(9) E[C3) ig(t) W;']
c3 + ELN(t+ ty) — N(H] - E(W)]
¢y [m(t+ty) —m(D] - ny

where 1y which denotes the expectation of

random variable W, , is the expected time

needed to remove a fault during the

warranty period.

4. Cost for delayed delivery during [T, 4]
EC,(t) = l:cp(t—z')dG(r)

It is assumed that the scheduled software
delivery time T has an exponential
distribution with a finite mean Ag In this
paper, we consider two special types of
delivery delay cost: c,(8)= kit, k>0, linearly

c)=kF, -
exponentially

increasing function and
[exp(vt—1)1, ¥>0, %0,
increasing function. Suppose that the random
scheduled delivery time T is deterministic

to be equal to f; then G(8 is defined as
l, t>t
G(1) ={ 5

0, r<t,,

where ts is a constant.

Therefore, adding all four relevant costs, the

expected total software cost EC(2) can be
expressed as

EC(H = EC,(H+EC,(D+ EC,(H+ EC,D)
= ¢+ cop ym(h)
+ 6’31»I W[m(t+ tw) - m(t)]

+ [e(t=d6(x) 5

4. Optimal software release polices

In this section, we study the behavior of
the expected total software cost EC(#),
given in (1), to determine the optimal
software release time, t‘, which minimizes
such an expected cost. For this purpose, we
evaluate the first and second order
derivatives of the equation (1) with respect
to t to obtain the following expressions.
Denote
y(H = d[EC(H]/dt

= ¢+ ciyab- exp(— b))
+ cqbt yabl exp(— bty) — 11 - exp(— o)

t
+djat [e,(t—1dG(),

and
w() = d*LEC()]/dE
= exp(— &) [u(H—-C] , (2)
where

u(P) = exp(bt) - d%/df’ f(;cl,(t— 1)dG(T)

and
C = ab’cyi v+ ab’cyu yl exp(—bty) — 1] .

As given in Sections 4.1 and 42, we
consider two types of delivery delay costs,
which are linearly increasing and
exponentially increasing. The linearly
increasing cost type implies that the
expected cost incurred due to the delayed
delivery 1s proportional to the length of
delayed time and for the exponentially
increasing cost type, the expected cost is
exponentially proportional to the delayed
time.

4.1 Linearly increasing delivery
delay cost (c,(0=kt, £50)

- 253 -

In this case, the following equations can
be derived using equation (2):

y(8) = d[EC(9)]/dt
= ¢+ clyab- exp(— bf)
+ cqut yabl exp(— bty) — 1] - exp(— bt)
+ k- [1—exp(—t/Ag)]
and
u(t) = (ky/Ag) - exp[(b—1/A91] .

It is noted that «(# is an increasing
function of t when &>1/A ¢ and a decreasing

function of ¢t when 1/Ag and
ILrg wWh=c,+4k, which 1is positive. In

addition, it is also possible to understand the
graphical pattern of ¥(§ by comparing the
value of «(0) with C. For example, if
1/A g and C=u(0), ¥(¢) is increasing after

decreasing. Thus & can have four
different types of graphical patterns:
Increasing, decreasing, increasing after

decreasing, and decreasing after increasing
type. For each type of (8, the method of
selecting the optimal software release time,
t" can be summarized as follows:

Theorem 1. Given €1, €2, €3 My Hw 1y

k,, A the optimal software release time,

expected total
can be

t' which minimizes the
software cost given in (1),
determined as follows;

(a) Let ¥(H be an increasing or decreasing
after increasing function. Then,

(1) if 3(0)=0 and »(H=0 for all ¢, then
t" =0,

(2) if y(0)<0 and ¥ <0 for t=[0,¢) and
y(H=0 for t=(t,), then

" =t where t =y7'(0).

(b) Let () be a decreasing function, then
t"=0.

(¢) Let (&) be an
decreasing function. Then
(1) if »(0)=0 and »(»>0 for all ¢ then
=0,

(2) if ¥0)>0,

increasing after

y(H>0 for ¢t=[0,%) and

wH<0 fortelt, t,), and ¥H=20 for
te[t,,), then

=0 if EC0)<EC({,) ,

=t if EC0)>EC{) ,
where 1 =77 (0).
(3) if ¥(0)<0 and ¥(H<O for t=[0,4) and
y(H=0 for te[t,), then

" =1, where b =y"(0)_

Proof.
We show the proof for case (c) only,

where »(®) is an increasing after decreasing
function of ¢ and 1Lrgy(t)= ¢, + k& (>0).

(1) If »(0)=0 and »(®)>0 for all ¢, then
EC(t) is strictly increasing in ¢t Hence,
t" =0 minimizes EC(.

(2) If »(0)>0, there exist ¢, f, such that
wWH>0 for any t=[0,%) and ¥(H<0 for
any telt, t,). Therefore, ¢ =0 if
EC(0)<EC(t,) and t*=t, if EC(0)> EC(t,).
(3) If »(0)<0, there exists a # such that
te[0,4) and ¥(H=0 for
tr=t,

¥(H<0 for any
any telt, o). where

Iy =y_1(0),

Therefore,

The proofs of cases (a) and (b) are
similar to that of (c) and so it is omitted.

increasing
(c p(t) = kz *

4.2 Exponentially
delivery delay cost

[exp(¥t—1)], ¥>0, £>0)

Substituting c,(§=4k, - [exp(yt—1)] for
c,(9 of the equation (2), we obtain

WD = c;+cuypab exp(— b
+ cau yabl exp(— bty) —1] - exp(— bf)

+ kyy - [exp(¥) — exp(— #A)] /(1 +AgY¥)
and
u(f) = k¥« [1/Ag - expl(6—1/A)4
+yexpl(b+¥)A1/(1+Ag) .

It is observed that for &1/As, wu(d is

—-254 -

an increasing function of t and for &<{1/Ag,
() is an Increasing function or an
increasing after decreasing function of ¢ It

is also noted that le wWH=o and

lti_,m u(f)=oco. Based on such observations,

the graphic patterns of y(® can have one of
three different monotonic properties:
increasing, increasing after decreasing, and
increasing initially, decreasing and then
increasing. When (8 is increasing or
increasing after decreasing function of ¢, the
methods are the same as that described in
cases (a) and (c) of Theorem 1. For the
case of increasing initially, decreasing and
then increasing, the optimal software release
time, t*, can be determined as in Theorem

2.

Theorem 2. Given €1, €2, G Hy Hw Iy

’

kA the optimal software release time, ¢°
which minimizes the expected total software
cost is determined as follows;

(a) Let %(® be an increasing initially,
decreasing and then, increasing function of ¢.
Then

1) if »(0)=0 and for all ¢ (=0, then

t'=0.
(2) if »0)>0, ¥(H>0 for t=[0,8), WH<0
for te[t,,t), and ¥(H=0
for te [t ,) then
*=0 if EC0)<EC() ,
t*=t it EC0)>EC() ,
where #, =1y ~}0).
(3) if ¥(0)<0 and H§<0 for t=[0,4) and
(=0 for t=[t,), then
t*=t, where t,=y ~(0).
(4) if »(0)<0 and
y(H<0 for t=[0,8), HH=20 for telty,t),
W(D<0 for tety, t;),
y(H=0 for te[t; ,0), then

t*=t; if EC(4)<EC(f) ,
t*=t, if EC(£)>EC(t;) .
Proof.

We prove the case (4) only. Since ¥(9 is

initially increasing, decreasing and then
increasing, if (0)<0, then there exists # ,

t; ,t, such that y(H<0 for any t=[0,),
wW(H=0 for any te[ty,t;), WH<0 for any
telty, t;) and ¥(H=0 for any te(t ,).
Thus, it holds that t*=t¢; if EC(t;)<EC(t;)

and t*=1¢, if EC(#)>EC(t;)

The remaining cases can be proved
similarly to that of (4) and thus the proofs
are omitted.

5. Numerical examples

In this section, we present numerical
examples to illustrate the proposed method
in Section 4. For the purpose of numerical
calculations, we apply our cost model to a
set of real testing data, which is shown in
<Table 1>. These data set is given in
Misra (1983). Using the maximum likelihood
estimate method, the parameters of
Goel-Okumoto model can be easily estimated

as 4=14232 5=0.1246.

<Table 1> Number of faults in 25 1-hour
intervals and cumulative number of faults

Hour{ 1 |2 {34567 |8|9]10]11]12

no.
of {2716 1110111 7{2}5[3|1|4]7

faults

cumu
lative
no. {27|143(54|64)|75|82|841{89(92|93|97({104
of

faults

Hour| 14115{16(17|18[19]12021(22]23|24|25

no.
of {556 |0S5|1[t|{2f{1}2¢11]1

faults

cumu
lative
no. [111116{122{122{127|128{129{131]|132|134{135|136
of

faults

As for the coefficients specified in the
cost model considered, we assume the
following parameter values:
e,=10 1, =10

e, =1 ¢ =5 . My =01

)

—255—

Hy =03 A =10

<Tables 2 and 3> show the numerical
results with regard to the optimal software
release time and the corresponding quantities
for two types of c¢,(# discussed in Section

4.

<Table 2> Optimal software release time

when c,() =kt
. Expected
Optimal Expected fault
total .
release number of | detection
k . software
1 time detected faults| rate
cost
* . m(t’ m(t")/ a
t EC() @) ()
0.1 26.3208 | 107.955 136.962 [0.962356
05 24.0248 | 114.325 135.188 0.949888
1 21.9308 | 121.293 133.062 0.934949
2 19.0542 | 132.987 129.071 0.906907
3 17.0796 | 142.655 125.375 0.880939
4 15.5943 | 15092 121.93 0.856734
5 14.4152 | 158.141 118.704 0.834061

<Table 3> Optimal software release time
when c,()=k,[exp(0.1¢—1)], with ¥=0.1.

Optimal Ex:;::ed Expected fault

release number of | detection
k . software
2 time detected faults | rate
. cost . .

t EC(") m(t') m(t ')/ a
0.1 26.4901 | 106.852 137.074 0.963141
0.5 24.9366 | 109.086 135.954 0.95527
1 23.6561 | 111.459 134.853 0.947532
2 21.9751 | 115432 133.113 0.935307
3 20.7278 118.79 131.698 0.925365
4 19.9523 | 121.757 130.474 0.916762
5 19.2431 | 124.444 129.379 0.909072

From Tables 2 and 3, we observe that as
“the parameter values 4, and k&, in c,(?)
increase, then the expected total cost EC(#)
increases. However, the optimal software
release time ¢* and the expected number of

detected software faults me(¢”) decreases for
both cases. <Figures 1 and 2> graph the
expected total software cost as a function of
t for two types of delayed delivery costs.

EC{t)
250 300
! 1

200
]

150
!

t

<Figure 1> Expected total
EC(®) when c,(H=0.1¢

software cost,

1000 1200
1

800
1

EC(t)
600
T~

400
]

200
1

0 20 40 60 80 100

t

<Figure 2> Expected total software cost,
EC(#) when c,(§=1/10 - [exp(0.11—1)]

References

[11 AL. Goel and K. Okumoto (1979), Time-
dependent error-detection rate model for
software reliability and other performance
measures, IEEE Transactions on Reliability,
vol. 28, 206-211.

[2] CH. Lee, KH. Nam and DH. Park
(2002), Software profit model under imperfect
debugging and optimal software release
policy, IEICE Transactions on Information
and Systems, vol. E85-D No.5, 833-838.

[3] P.N. Misra (1983), Software reliability

— 256 —

analysis, IBM Systems Journal, vol. 22, pp.
262-270.

[4] H. Pham (1996), A software cost model
with imperfect debugging, random life cycle
and penalty cost, International Journal of
Systems Science, vol. 27, 455-463.

[5] S. Yamada, K. Tokuno and S. Osaki
(1992), Imperfect debugging models with
fault introduction rate for software reliability
assessment, International Journal of Systems
Science, vol. 23, 2241-2252.

[6] S. Yamada and S. Osaki (1985), Cost-
reliability optimum release policies for
software systems, IEEE Transactions on
Reliability, vol. 34, 422-424.

[7] W.Y. Yun and D.S. Bai (1990), Optimum
software release policy with random life
cycle, IEEE Transactions on Reliability,
vol.39, 167-170.

— 257

