04-2-6

Establishment of Cryopreservation Method using Somatic Embryos in Herbaceous Peony (*Paeonia lactiflora* Pall.)

Hyun Mi Kim¹, Mi Jin Seo¹, Jong Hee Shin², Jae Keun Sohn^{1*}

¹Department of Agronomy, Kyungpook National University, Daegu 702-701, South Korea ²Institute of Bioresources, Gyeoungbuk Provincial Agricultural Technology Administration, Andong 760-891, South Korea

Objectives

This study was carried out to establish a successful cryopreservation protocol using somatic embryos in herbaceous peony.

Materials and Methods

- 1. Materials: Somatic embryos of herbaceous peony (Paeonia lactiflora Pall.)
- 2. Methods

Embryogenesis from anthers and cotyledon tissues \rightarrow classification of somatic embryos \rightarrow desiccation by air drying \rightarrow cryopreservation in LN using cryobial (2m ℓ) \rightarrow thawing in water bath \rightarrow culture on MS containing 0.3 mg/L GA₃

Results and Discussion

We established a successful cryopreservation protocol using somatic embryos in peony. Somatic embryos obtained from the cotyledon tissues cultured for 90 days on MS medium containing 1.0 mg/L ABA and from the anthers cultured for 90 120 days on hormone-free MS medium or MS medium with 2.0 mg/L PAA. The highest survival rate (94%) was obtained from the somatic embryos desiccated for 1 h by air drying (Fig. 1). This cryopreservation protocol appears to be a promising technique for germplasm preservation of herbaceous peony.

Fig. 1. Plant regeneration from the cryopreserved somatic embryos.

A: Somatic embryos in cryobial, B: Plant regeneration from the cryopreserved embryos,

C: Plant transplanted in pot.

^{*} Corresponding author: Jae Keun Sohn, TEL: 053-950-5711, E-mail: jhsohn@knu.ac.kr