[SP-15] ## Adsorption and thermal decomposition of 1,3-disilabutane on the $Si(001)2\times1$ surface <u>B.J. Baik</u>*,**, J.H. Oh***, T.S. Yang*, H.-G. Jee****, K.-S. An*, Y. Kim*, C.-Y. Park*** and S.-B. Lee**** *Thin Film Materials Laboratory, Korea Research Institute of Chemical Technology **Department of Physics, Sungkyunkwan university ***Surface Analysis Laboratory, Korea Research Institute of Standards and Science ****Department of Physics, Sungkyunkwan university In recent years, many researchers have looked for useful single molecular precursors to effectively grow thin films of silicon carbide. 1,3-disilabutane (H₃Si-CH₂-SiH₂-CH₃), which we employed, has been considered as a good single precursor based on its appropriate stoichiometry of silicon and carbon. In this study, the initial adsorption mechanism of 1,3-disilabutane on the clean Si(001)2×1 surface and its thermal decomposition process to form the SiC layers have been investigated by synchrotron radiation photoemission spectroscopy.