[SP-09] ## Effects of ferroelectric and ferromagnetic buffer layers in CMR epitaxial films <u>조광환</u>, ¹ 박상윤, ¹ 이영백, ¹ J. H. Kang, ² V. G. Prokhorov, ³ ¹q-Psi & Department of Physics, Hanyang University, Korea ²Samsung Electronics Co., Ltd. ³Institute of metal Physics, NASU, Kiev, Ukraine Perovskite ferromagnetic and ferroelectric buffer layers on the LaAlO₃ (001) substrate for colossal-magnetoresistance (CMR) epitaxial film play an important role for the magnetic and the transport properties. La₀₈Ca₀₂MnO₃ and BaTiO₃, were prepared as the buffer layers by the 'soft'-target magnetron sputtering. By using X-ray diffraction and high-resolution electron microscopy, we observed that the out-of-plane uniaxial tensile strains occur in CMR/CMR films, but the strain for a La₀₈Sr₀₂MnO₃ film without the La₀₈Ca₀₂MnO₃ buffer layer is larger than that with the buffer layer. It is shown that the metal-insulator and the ferromagnetic transitions turn out to be shifted to higher temperatures for La₀₈Sr₀₂MnO₃ on La₀₈Ca₀₂MnO₃ compared with the bare La₀₈Sr₀₂MnO₃ However, the metal-insulator transition was not observed in a temperature range of 10 to 300 K in the CMR film on a BaTiO₃ buffer layer. The enhanced magnetoresistance and ferromagnetic ordering in the La_{0.8}Sr_{0.2}MnO₃/La_{0.8}Sr_{0.2}MnO₃ bilayer are elucidated with the lattice-strain relaxation in the La_{0.8}Sr_{0.2}MnO₃ layer. On the other hand, the discovered suppression of contribution from the Jahn-Teller distortion to the ferromagnetic ordering with increasing the lattice mismatch between substrate and film manifests a physical limit of the weak-strain approach in describing the magnetic properties of manganite films.