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  A review of the extent of physical and economical damage from liquefaction during recent earthquakes 

(Loma Prieta in 1989, Northridge in 1994, Kobe in 1995, and Turkey and Taiwan in 1999) shows that 

disastrous earthquakes occur on a regular basis and liquefaction of saturated granular soils is recognized as 

one of the major causes of ground failure during earthquakes. To address concerns with soil deformation and 

ground failure caused by earthquake motion, dynamics of fluid saturated porous media have been employed 

to analyze the liquefaction of saturated soils. Based on Biot’s pioneering work (1941, 1956a, 1956b, and 

1962), various theories have been proposed to explain the mechanical behavior of saturated soils under 

dynamic loads and methodologies have been suggested for the analysis of liquefaction. However, due to the 

complexity of problem in dynamics of fluid saturated soils, practical solutions are possible only through 

numerical approaches at the present time. Therefore, this study is focused on the development of 

computational procedures to produce numerical solutions incorporating dynamic theory for fluid saturated soils.
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  Extending Biot's theory of fluid saturated porous media, Hiremath (1987, 1996) proposed the theory of dynamics for 
saturated soils was proposed. This theory uses a converted coordinate system. The motion of the solid is determined 
with respect to a fixed reference volume which the motion of the fluid is characterized in relation to the solid. Therefore 
the fluid itself does not have a reference state. The definitions, relations and formulae for the use of converted 
coordinates in the mechanics of continua can be referred in Hiremath (1987, 1996).

 The momentum balance equations by Hiremath (1987, 1996) in terms of the bulk stress, tij and the partial pressure,   
was given as

iiijij wug &&&& )2()1(
, ρρρτ +=+ (2.1)

[ ]iiiij uwDug &&&& −+=+ )2()2()2(
, ρρπ (2.2)

  where superposed dots denote time derivatives, iu  and iw  are the components of the displacement vectors 

associated with the solid and the fluid respectively, and the coefficient, D is a viscous coupling term. The density terms 
)1(ρ  and )2(ρ  are related to the density of the solid ( s

ρ ) and the fluid ( f
ρ ) respectively by means of the porosity n

sn ρρ )1()1( −= (2.3)

fnρρ =)2(
(2.4)

  Subtracting (2.1) from (2.2), an equilibrium equation in terms of the partial solid stress is obtained as

[ ]iiiijij uwDugt &&&& −−=+ )1()1()1(
, ρρ (2.5)

  For small deformation, the kinematical relations are given as

[ ]ijjiij uue ,,2
1 +=

(2.6)

iiw ,=ξ (2.7)

  where ije  and ξ  are components of the symmetric strain tensor of solid and fluid, respectively.
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  The constitutive equations for linear elastic fluid saturated soil are given as

ijklklklklijij eMeE δξαδατ ][ ++= (2.8)

][ ξαπ += kleM (2.9)

  The inverse relationships are

)( klklijklkl Ce απδδ +=

ijklijklijklijkl CC
M

τδαδδαπξ −




 += 21

(2.10)

  Here ijklE  and ijklC  are components of the elasticity and compliance tensor of the elastic solid, respectively.  is the 

compressibility of the solid and M is that of the fluid.

  The displacement boundary conditions are 

),(ˆ),( txutxu ii = on ),0[1 ∞×S

),(ˆ),( txwtxw ii =  on ),0[2 ∞×S (2.11)

  and the traction boundary conditions are 

),(ˆ),( txntx iii ππ =  on ),0[3 ∞×S

),(ˆ),(),( txTtxTntx iijij ==τ   on ),0[4 ∞×S  (2.12)

  The initial conditions for the problems are

)()0,( 0 xuxu =

)()0,( 0 xuxu && =

)()0,( 0 xwxw =  

)()0,( 0 xwxw && =  (2.13)
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  The equations (2.1) through (2.13) completely define the initial boundary value problem of small deformation of fluid 
saturated soil.

  For development of variational principles, the field equations need to be rewritten in the form of convolution product 
so that the time derivatives are avoided. This can be done through applying Laplace transform and taking inverse after 
appropriate rearrangement.

  Laplace transformation of (2.1) and (2.2) followed by inversion gives

0* )2()1(
, =−−+ iiijij wuFt ρρτ (3.1)

0][* )2(
, =−−−+ iiiij uwDwGt ρπ (3.2)

where

)]0()0([* )1(
iiii utubtF &⋅−+= ρρ )]0()0([)2(

ii wtw &⋅−+ ρ (3.3)

)]0()0([* )2()2(
iiij wtwbtG &⋅++= ρρ )]0()0([ ii utwtD ⋅−⋅+ (3.4)

  The symbol “*” denotes the convolution product defined as

τττ dtgfgf
t

∫ −=
0

)()(*
(3.5)

  Equations (2.8) to (2.10) must be restated so that the constitutive relations show the dependence of quantities 
appearing in the equilibrium equations upon corresponding kinematical quantities in them.

)(*** ξδαδατ ++= klklijklijklij eMteEtt

)(** ξαδπ += ijijeMtt  

)(** klklijklij Ctet απδτ −=

ijklijklijklijkl CtC
M

tt τδαδδαπξ *1** 2 −




 +=

(3.6)
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  The integral form of field equations (3.1) through (3.6) is can be written in a self-adjoint matrix form;

( ) fuA = on ),0[ ∞×R (4.1)

Here,
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  Elements of matrix, A  satisfy self-adjointness. The operators on the diagonal are symmetric and the off-diagonal 
operators constitute adjoint pairs with respect to the bilinear mapping. Consistent boundary conditions for the equations 
(4.1) are 

jiji nutnut ˆ∗−=∗− on ),0[1 ∞×S

iiii nwtnwt ˆ∗−=∗−  on ),0[2 ∞×S

ii ntnt ππ ˆ∗=∗  on ),0[3 ∞×S

ijij Ttnt ˆ∗=∗τ   on ),0[4 ∞×S (4.6)
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  Consistent form of the internal jump discontinuities is 

jiji ngtnut )()'( 1∗−=∗−  on ),0[1 ∞×iS

2)'( gtnwt ii ∗−=∗−  on ),0[2 ∞×iS

    ii ngtnt 3)'( ∗=∗ π    on ),0[3 ∞×iS

ijij ngtnt 4)'( ∗=∗ τ  on ),0[4 ∞×iS (4.7)

  Here, surface iii SSS 321 ,,  and iS4  are embedded in the interior of R . Operators in the self-adjoint operator matrix 

equation (4.1) have the following relationships;

RjijiRijji utut ,, ,*,* ττ −=
41

,*,*
SjijiSijji nutnut ττ ++

ii SjijiSijji nutnut
41

)'(,*,)'(* ττ ++
(4.8)

RiiRii wtwt ππ ,*,* ,, −=
32

,*,* SiiSii nwtnwt ππ ++

ii SiiSii nwtnwt
32

)'(,*,)'(* ππ ++
(4.9)

  In (4.8) and (4.9),  the R
,  can be evaluated as the sum of quantities evaluated over subregions of R  such that all 

the surfaces iiii SSSS 4321 ,,,  are contained in the union of the boundaries of these subregions. 

  For the operator equation (4.1), the governing function following (A.16) is defined as;

RiiRii uwuuu ,2,)( 2ρρ +=Ω
R

iiRijij ww
kf

ut ,)1*1(,* 2
, ++−

ρτ

RiiRii wtwt ππ ,*,* ,, +−
RijjiR

utt τπξ ,*,*2 ,+−

RijklklijijklRijij eeMEtet ,)(*,*2 2 δδατ ++−
RRijij MteMt ξξξδα ,*,*2 ++

RiiRii GwFu ,2,2 −−
21

)2(*,)2(*,
SiiiSjiiij nwwtnuut −−−− πτ

43
)2(*,)2(*,
SijijiSii Tntuntw −+−+ τππ

iS
jijiij ngnut

1
))(2)'((*, 1−− τ

iSii gnwt
2

)2)((*, 2−− π
iSiii ngntw

3
)2)'((*, 3−+ π

iS
ijiji ngntu

4
)2)'((*, 4−+ τ

   (4.10)
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  The Gateaux differential of this function along { }ξτπ ,,,,, ijijii ewuv =  is;

 RijijiiiV Ftwuuu 2*,)( ,2 −−+=Ω∆ τρρ
Rjijiii twuu ,2 *, τρρ −++

R
iiiii Gtw

kf
uw 2*)1*1(, ,

2
2 −−+++ πρρ

R
iiii tw

kf
uw ,

2
2 *)1*1(, πρρ −+++

RiiRii twttwt ξπξπ **,**, ,, −+−−
RijiiijRjiiiij etutetut **,**, ,,, −+−− ττ

Rijklklijijklijij MeMEtte ξδαδδατ +++−− )(**, 2

Rijklklijijklijij MeMEtte ξδαδδατ +++−− )(**, 2

  Rklkl MteMtt ξδαπξ ***, ++−+  Rklkl MteMtt ξδαπξ ***, ++−+

11
*,)ˆ2(*,

SjiijSjijiij nutnunut ττ −−−

22
*,)ˆ2(*, SiiSiiii nwtnwnwt ππ −−−

33
*,)ˆ2(*, SiiSiiii ntwnntw πππ −−−

44
*,)ˆ2(*,

SjijiSijiji ntuTntu ττ −−−

ii SjiijSjijiij nutngnut
11

)'(*,)(2)'(*, 1 ττ −−−

ii SiiSii nwtgnwt
22

)(*,)(2)'((*, 2 ππ −−−
ii SiiSiii ntwngntw

33
)'(*,)2)'(*, 3 ππ +−+

ii SjijiSijiji ntungntu
44

)'(*,)(2)'((*, 4 ττ +−−
(4.11)

  Using equation (4.8) and (4.9), the gateaux differential can be rewritten as;

RijijiiiV Ftwuuu −−+=Ω∆ ,2 *,2)( τρρ  RijjiijRii etuttwt **,2**,2 ,, −+−− τξπ

RijjiijRii etuttwt **,2**,2 ,, −+−− τξπ
Rijklklijijklijij MeMEtte ξδαδδατ +++−− )(**,2 2

Rklkl MteMtt ξδαπξ ***,2 ++−+
1

)(*,2
Sjijiij nunut −− τ

   

2
)(*,2 Siiii nwnwt −− π

3
)(*,2 Siiii nntw ππ −−

4
)(*,2
Sijiji Tntu −− τ

iS
jijiij ngnut

1
)()'(*,2 1−− τ

iSii gnwt
2

)()'((*,2 2−− π
iSiii ngntw

3
))'((*,2 3−+ π

iS
ijiji ngntu

4
)()'((*,2 4−+ τ

(4.12)
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  The Gateaux differential vanishes if and only if all the field equations along with the boundary conditions and the 

jump conditions are satisfied because of linearity and non-degeneracy of bilinear mapping. Hence, vanishing of )(uVΩ∆  

for all wv∈  implies satisfaction of (4.1), (4.7), and (4.8).

  A numerical procedure to produce computational solutions incorporating Hiremath’s dynamic theory for saturated soils 

is developed. In the theory, the motion of the solid is described with respect to its reference configuration but the motion 

of the fluid is described as relative to the solid. To transform the coupled initial boundary value problem of wave 

equations into an equivalent variational problem, the field equations are re written in the form of convolution product so 

that the time derivatives are avoided. The set of fluid variables are regarded as a multiple in the admissible space whose 

elements are defined in the spatial region. A solution of the mixed problem is an admissible state of the field variables, 

which satisfies the filed equation, the initial conditions and the boundary conditions to the problem. Extensions of this 

study are applicable for analyzing multi phase systems such as coupled problems with the simultaneous presence of 

water and air in which air pressure plays important role or that of water and oil for the treatment of oil reservoirs. The 

extensions can be done with the allowing the field equations of motion to contain two different fluids.
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MATHEMATICS 

A.1 Boundary Value Problem

The linear vector space W  consisting of all admissible states is referred to as the product space

nWWWW ×××= LLLLLL21  (A.1)

where iW  is an subspace whose elements represent the admissible state for an specific field variable, u.  Consider the 

boundary vale problem given as

       ( ) fuA = on R x ),0[ ∞  

       ( ) guC = on R∂  x ),0[ ∞ (A.2)

where R is an open connected region of interest, R∂  is the boundary of R, and A , C  are linear operator matrices.  The 

field operator A and the boundary operator C  are bounded and defined such that 

       RR VWA →:

       RR VWC ∂∂ →: (A.3)

RV , RV∂  are linear vector spaces defined on the regions indicated by the subscripts and RW , RW∂  are subsets in RV , RV∂ , 

respectively.  Throughout, A and C  are assumed to be linear so that 

( ) )()( vAuAvuA βαβα +=+    RWvu ∈,

( ) )()( vCuCvuC βαβα +=+    RWvu ∂∈, (A.4)

where βα ,  are arbitrary scalars.  Solution of boundary value problem implies determination of RWu∈  for given 

RVf ∈  and RVg ∂∈  subject to the satisfaction of equation (A.1)  (A.4).

A.2  Bilinear Mapping 

A bilinear mapping SVWB →×: , where SVW ,,  are linear vector spaces, for given ,, VvWw ∈∈  is 

defined as a function to assign an element in S  corresponding to an ordered pair ( )vw, .  B  is said to be bilinear if

( ) ),(),(, 2121 vwBvwBvwwB βαβα +=+  (A.5)

( ) ),(),(, 2121 vwBvwBvvwB βαβα +=+    (A.6)

where βα ,  are scalars.  The notation can be used as

RR vwvwB ,),( = (A.7)

B  is said to be non degenerate if 

0, =
R

vw    Ww∈  if and only if 0=v (A.8)

For VW = , B  is symmetric if 
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RR
wvvw ,, = (A.9)

A.3  Self Adjoint Operator

Let WVA →:  be an operator on the linear vector space V  defined on spatial region R .  Operator ∗A  is said 

to be adjoint of A  with respect to a bilinear mapping SWW
R

→×:,  if

( )wvDwAvAvw RRR
,,, ∂

∗ += (A.10)

for all Ww∈  and Vv∈ .  Here, ( )wvD R ,∂  represents quantities associated with the boundary R∂  of R .  If ∗= AA , 

then A  is said to be self adjoint.  In particular, a self adjoint operator A  on V  is symmetric with respect to the bilinear 

mapping if WV =  and 

RR
AwvAvw ,, = (A.11)

A. 4 Gateaux Differential of a Function

Considering V and S as linear vector spaces, the Gateaux differential of a continuous function SVF →:  is 

defined as 

( ) [ ])()(1lim
0

uFvuFuFV −+=∆
→

λ
λλ (A.12)

provided the limit exists.  v  is referred to as the ‘path’ and λ  is a scalar.  For Vvu ∈, , Vvu ∈+ λ .  Equation (A.12) 

can be equivalently written as 

( )
0

)(
=

+=∆
λ

λ
λ

vuF
d
duFV (A.13)

A.5  Basic Variational Principles

For the boundary value problem given by (A.1) with homogeneous boundary condition, Mikhlin (1965) 

showed the functional, )(uΩ  to be a minimum value for the unique solution 0u  with self adjoint, positive definite 

operator A , 

RR
fuuAuu ,2,)( −=Ω (A.14)

where R
,  denotes inner product over the separable space of square functions.  The 0u  that minimizes the 

functional (A.14) is the solution of the problem (A.1).  Taking Gateaux differential of (A.14),

( ) [ ]fuuAufvuvuvuAuV ,2,,2,(1lim
0

+−+−++=Ω∆
→

λλλ
λλ

            fvuAvvAu ,2,, −+=

             0,2 =−= fAuv (A.15)

In (A.15), the linearity and self adjointness of A  with respect to the bilinear mapping and the symmetry of 

the bilinear mapping are assumed.  The Gateaux differential vanishes at the solution 0u  such that 00 =− fAu .  For the 
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vanishing of the Gateaux differential at 0uu =  to imply 00 =− fAu , the bilinear mapping has to be into the real line 

and the operator must be positive.  However, in general, it is only necessary to use vanishing of the Gateaux differential 

as equivalent to (A.1) being satisfied.  The governing function for the operator equation (A.2) can be defined as

      RijijiRijiji guCufuAu
∂

−+−=Ω 2,2,   (A.16)

A.6  Consistent Boundary and Initial Discontinuity

Sandhu (1976) pointed out that appropriate boundary terms should be included in the governing function even 

if they are homogeneous.  This is important for approximation procedures such as the finite element method, where the 

functions of limited smoothness are used.  The boundary operators must be in a form consistent with the field operator.  

Considering the boundary value problem of multi variables given (A.5) and (A.6), Sandhu (1976) defined consistency 

of boundary operators with the field operators to be the property;

∑∑ ∂
∂

∂ −=
n

j
Riijj

R

n

j
jijjjiR vCuuCvuuD ,,),(

, ni ,,2,1 LLL=  (A.17)

To find an approximation to the exact solution by the finite element method, the function space with limited 

smoothness over the entire domain is sometimes used.  In order to properly handle this limited smoothness problem in 

the variational formulation, Sandhu (1976) introduced internal discontinuity conditions in the form;

( ) guC ='  on iR∂ (A.18)

where a prime denotes the internal jump discontinuity along element boundary iR∂  embedded in the region R . Sandhu 

and salaam (1975a) and Sandhu (1975b) showed that this condition can be included explicitly in the governing function.

- 756 -


	Main
	Contents
	Print
	Return

