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Abstract: Study of human-robot communication is one of the most important research areas. Among various communication

media, any useful law we find in voice communication in human-human interactions, is significant in human-robot interactions

too. Control strategy of most of such systems available at present is on/off control. These robots activate a function if particular

word or phrase associated with that function can be recognized in the user utterance. Recently, there have been some researches

on controlling robots using information rich fuzzy commands such as “go little slowly”. However, in those works, although the

voice command interpretation has been considered, learning from such commands has not been treated. In this paper, learning

from such information rich voice commands for controlling a robot is studied. New concepts of the coach-player model and the

sub-coach are proposed and such concepts are also demonstrated for a PA-10 redundant manipulator.

Keywords: fuzzy voice commands, coach-player model, sub-coach, probabilistic neural network (PNN).

1. Introduction
Robots found their first real-world application on the fac-

tory floor. Still, heavy industry is the environment in which

robotics plays its most important role. However, working

robots are gradually spreading, gradually improving, and

gradually moving into new areas. If the dreams of researches

become successful, in future, robots will assist the elderly

and disabled people into and out of wheelchairs and beds,

be conversant in several languages, watch over babies, and

provide a sympathetic ear to the lonely [1].

Although, initially, the importance of robots was found

mainly in heavy industries, isolated from people, now a new

important dimension has been added: that is, the human-

robot interaction. The area of human-robot interaction has

been developed into such an extent, even socially interactive

robots have received the attention of researches. Socially in-

teractive robots are capable of showing human like behaviour

when dealing with another human, i.e. communicating as

peers using natural languages, gestures, etc.[2].

As the human-robot relationship is becoming more impor-

tant, the studies on human-robot communication too has

been given a high priority. Among various communication

media, any useful law that we find in voice communication

in human-human interactions, is significant in human-robot

interactions too. The importance of voice communication

with robots can be found in the areas like nursing and aid-

ing elderly people, helping disabled people, helping people

in complex tasks such as surgery and implementing space

restricted systems where the usage of other input-output de-

vices is not feasible.

Most of the available systems used for such applications are

based on on/off control. These robots activate a function

if a perticular word or a phrase associated with that func-

tion can be recognized in the user utterance. However, in

natural language communication, encountering words and

phrases with fuzzy implications is inevitable. On the other-

hand, words with fuzzy implications are useful in machine

control because they can fine tune the performance of the

machine. For example, a command like “move slowly” will

contain many information regarding the nature of the ter-

rain, distance to obstacles, etc.[3].

Lin and Kan[4] proposed an adaptive fuzzy command aqui-

sition method to control machines by natural language com-

mands such as “move forward at a very high speed”. In [5]

robot control using such information rich voice commands

has been studied. In a more practical approach adopted in

[6], controlling a redundant manipulator by such commands

to achieve a complex assembling task has been demonstrated.

However, in all those systems, although the interpretation

of fuzzy voice commands has been considered well, the im-

portance of learning from such commands has not been ad-

dressed. As explained above, this type of commands contains

a lot of information because of the fact that they are gener-

ated by intelligent and experienced human beings. There-

fore, if it is possible to learn from them and re-use that

knowledge effectively, it will be a very efficient process. This

paper proposes a learning method from such fuzzy voice com-

mands for controlling a robot.

Consider the process of controlling a robot to achieve a com-

plex task using voice commands. If the robot does not have

any prior knowledge of the task and it cannot learn from the

previous commands, the user has to issue a series of com-

mands at each step such as:

• “move forward slowly”

• “turn to right”

• “move far”

• “stop”, etc.

This type of a system can be seen as a coach-player sys-

tem, since a coach (or a human user) commands a robot (or

a player) by observing its performance at each step. The

robot acts accordingly and the user will stop commanding

when the performance of the robot comes to a satisfactory

level (the work at hand is completed). Although this kind of

coach-player systems is very useful in many situations, their

disadvantage is the need of issuing commands at each small

step. This can be eliminated by introducing the concept of a
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sub-coach. Sub-coach is a software process which stands in

between the user (coach) and the robot (player). It can learn

from the fuzzy voice commands issued by the user and can

use that knowledge to control the robot without the help of

the coach. However, sub-coach can consult the coach in situ-

ations where it does not have sufficient knowledge to handle

a perticular situation.

The concept of a sub-coach for learning has been first pro-

posed in [7]. However, there, the demonstration of the con-

cept was limited to crisp decision making by a sub-coach.

In this paper, that concept is more amplified by introducing

fuzzy decision making too.

2. Learning from Fuzzy Voice Commands
In a simple coach-player system, the user directly issues com-

mands to the robot. Once a sub-coach has been introduced

to this type of a system, initially, it will be just an observer.

It observs commands issued by the user and the actions per-

formed by the robot in respect to such commands. Thus,

gradually the sub-coach can build a knowledge which is suf-

ficient to issue commands to the robot, to perform activities

which are similar to what it did during the learning period,

without consulting the human user. Of course, in certain sit-

uations, the sub-coach may consult the human user if it does

not possess enough knowledge to take a decision according

to current circumstances.

When controlling a robot with voice commands, the com-

mand of the user depends on the state of the robot at that

perticular instance. User evaluates this state subjectively us-

ing his knowledge and experience, and issues the next com-

mand which he thinks the most appropriate. For example,

when controlling a mobile robot to navigate through obsta-

cles, if the user thinks that the robot might clash with an

obstacle ahead if it continues to travel at the current velocity,

he might say “robot, slow down”.

Therefore, the process of controlling a robot using a series

of voice commands can be seen as changing the state of the

robot repetitively until the required target is achieved. Cur-

rent state of the robot is defined by all the parameters which

may affect the users’s next command. It may include posi-

tion information, velocity information, etc. The exact defi-

nition of the current state depends on the application under

consideration.

Say, during the learning phase, the human user issued com-

mands with respect to N states of the robot. That means,

the sub-coach had the opportunity to learn the response of

the human with respect to N possible states of the robot. If

the ith state is written as Si, it is possible to define Si as,

Si = {x1, x2, ..., xp} (1)

Here, x1, x2, ..., xp are the state-parameters that define the

state of the robot. p is the number of parameters required to

define a state. Thus, a state is a p dimensional entity and it is

a member of a p dimensional state-space. State-parameters

can either be scalars or vectors depending on the application.

If the command issued at the ith state is Ci, it can be defined

as,

Table 1. Fuzzy commands used by the human user.

Action (Di) Action Modification (di)

go up

go down very little

go right little

go left medium

go forward far

go backward

Ci = f(Si) (2)

Here, f(·) is a subjective function which depends on the

knowledge, experience, attitude, etc. of the user. If enough

intelligence is built into the sub-coach, it can learn from

C1, C2, ..., CN issued in response to the states S1, S2, ..., SN .

Thus, it can build a knowledge base containing learned states

and corresponding commands and use them later for decision

making.

3. Decision Making
In any job, if the current state of the robot is Si, the hu-

man user or the coach uses {Si, his knowledge, his experi-

ence, his attitude, etc.} to decide the next command Ci.

If the same state is presented to the sub-coach, it uses

{Si, the knowledge base} to decide Ci.

The most significant feature in the decision making process

of the sub-coach is originated from the fact that the human

user commands are fuzzy in their very nature. That means,

although we can define a state of the robot by various mea-

surable parameters, the human user understands them when

he makes a decision only using his own senses. Therefore, the

decisions made by the user are not objevtive; rather they are

subjective decisions. The sub-coach can utilize this property

to generate decisions, which are similar to the human user

commands.

As explained above, if the dimension of a state is p, then it is

a member of a p dimensional state-space. Since the human

user perceives a state using his own senses, there is a high

correlation between the decisions he takes in response to two

sufficiently closer members in the state space. Therefore, if

the sub-coach can find a sufficiently closer previous state

from the knowledge base, it can deduce a suitable command

for the current state.

Thus, finding the previous command issued in repect to a suf-

ficiently closer state is the major task in the decision making

process.

4. System Overview
To prove the proposed concept, the following test model was

used.

1. Objective:

• Moving the tip of a robot manipulator from one point to

another avoiding obstacles.

2. Decisions that are required to take at each step:

• Direction to move.
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Table 2. Knowledge base, where tip position deviations (relative to the tool frame) of PA-10 are given in milimeters.

i State (Si) Coach’s Command (Ci) Actual distance travelled

in response to Ci, (li)

Sxi Syi Szi Txi Tyi Tzi Di di

... ... ... ... ... ... ... ... ...

5 531.70 −120.12 552.34 597.97 −292.00 552.30 Forward Little Medium 1

6 545.36 −120.41 552.83 597.97 −292.00 552.30 Right Medium High

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

13 550.63 −298.29 552.63 597.97 −292.00 552.30 Forward Medium Low

14 569.13 −302.47 552.66 597.97 −292.00 552.30 Forward Little Medium 1

15 417.99 −230.91 552.27 597.96 −290.96 552.31 Right Far High

16 418.07 −322.07 552.32 597.96 −290.96 552.31 Right Little High

17 418.09 −342.08 552.40 597.96 −290.96 552.31 Forward Far High

... ... ... ... ... ... ... ... ... ...

55 606.35 −305.18 552.76 597.95 −290.98 552.35 Backward Very Little Low

PA-10 Portable General
Purpose Intelligent Arm

Arm Controller

Personal Computer

User

Microphone

Fig. 1. The experimental setup.

• Distance to move.

3. Fuzzy commands used by the human user to command

the robot based on his subjective evaluation of the above

decisions:

• Any combination of an ‘Action’ term and an ‘Action

Modification’ term given in Table 1.

Out of the two decisions required to take at a step, direction

decision is a non-fuzzy decision. The possible decisions are

up, down, left, right, forward, and backward. However, the

distance dicision is a fuzzy decision. In [10] for the inter-

pretation of fuzzy-commands, the response for the previous

command has been used. In this paper, in addition to that,

fuzzy partitioning of the input-space [11] is used for the fuzzy

inference.

The experimental setup is shown in Fig. 1. It consists of

a microphone, a personal computer, a PA-10 portable gen-

eral purpose intelligent arm and the arm controller. The

speech recognition software, the sub-coach program and the

operational control program for PA-10 are hosted in the per-

sonal computer whose operating system is Windows XP. The

speech recognition was performed using IBM Via Voice SDK.

5. Implementation
5.1. Building the knowledge base

State of the robot, Si was defined as

Si = {sT
i , tT

i } (3)
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Fig. 2. Training movements performed by the hman user

(coach).

where

sT
i = Current position vector of the robot

tT
i = Final target position vector

and

sT
i = [sxi , syi , szi ] (4)

tT
i = [txi , tyi , tzi ] (5)

where (sxi , syi , szi) and (txi , tyi , tzi) are the x, y, z coordi-

nates of the current position and of the final target, respec-

tively. Command Ci is defined as

Ci = {Di, di} (6)

where

Di = Direction command

di = Distance command

Possible values of Di and di are shown in Table 1. As ex-

plained above, to interpret the fuzzy distance commands,
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the actual distance travelled is used. Let the actual distance

travelled in response to Ci be li. Possible values of li are

low, medium 1, medium 2 and high.

Four training movements were set so as to cover different

areas of the working space of the robot. They are shown in

the Fig. 2. At each point marked with a circle, the user has

taken a direction decision and a distance decision. Using the

Si, Ci and li at those positions, the sub-coach has built a

knowledge base shown in Table 2. After the training, the

knowledge base consisted of 55 entries.

5.2. Decision making

Decision making by the sub-coach was realized using a Prob-

abilistic Neural Network (PNN). The PNN architecture used

in this paper is a new modified version of the conventional

PNN architecture. It is shown in Fig. 3. The difference

in this architecture is, the summation layer and the deci-

sion layer are composed of three parallel segments. That is

because, the same network is used to find three different val-

ues in parallel. They are, the direction command (D), the

distance command (d), and the actual distance travelled in

response to the previous command (l). These three segments

can be called as segment D, segment d, and segment l.

In the figure,

N = Number of learned states (number of entries in the

knowledge base)
K = Number of possible direction commands

M = Number of possible distance commands

Q = Number of possible distances travelled in response

to the previous command
Assume that Si is the input received by the PNN. The input

neurons are merely distribution units that supply the same

input value to all the pattern neurons.

Each pattern layer neuron corresponds to a previously

learned state. For example, jth neuron in the pattern layer

corresponds to the jth state in the knowledge base. Weight

vector xj associated with the jth neuron of the pattern layer

is composed of the jth state in the knowledge base.

Each pattern neuron forms the dot product of the input pat-

tern vector Si with a weight vector xj , i.e., zij = ST
i xj

and then performs a nonlinear operation on the dot product.

When using exp
[
(zij − 1)/σ2

]
as the nonlinear operator, the

output of the jth neuron is given by,

φj(Si) = exp

{
−(Si − xj)

T (Si − xj)

2σ2

}
(7)

if ‖Si‖2 = ‖xj‖2 = 1, where σ is a smoothing parameter [8]

[9].

φj(Si) is the activation level applied to the summation layer

neurons by the jth pattern layer neuron due to the input Si.

Weights that connect the pattern layer and the summation

layer are defined as follows:

w
(D)
j,k =

{
1 if Dj = Dk

0 otherwise
(8)

where k = 1, 2, ..., K

w
(d)
j,m =

{
1 if dj = dm

0 otherwise
(9)

where m = 1, 2, ..., M

w
(l)
j,q =

{
1 if lj = lq

0 otherwise
(10)

where q = 1, 2, ..., Q

Each pattern layer neuron connects to the each neuron in

each segment of the summation layer. For example, w
(D)
j,k is

the weight that connects the jth neuron of the pattern layer

to the kth neuron in the segment D of the summation layer.

If the direction decision Dj associated with the state j (the

jth learned state in the knowledge base) is equal to Dk, then

w
(D)
j,k is 1. Othewise, it is 0.

The summation layer neurons compute the maximum like-

lihood of Di, di, and li associated with the state Si being

equal to Dk, dm, and lq . They are found as follows:

PDk(Si) =

∑N

j=1
φj(Si)w

(D)
j,k∑N

j=1
w

(D)
j,k

(11)

Pdm(Si) =

∑N

j=1
φj(Si)w

(d)
j,m∑N

j=1
w

(d)
j,m

(12)

Plq (Si) =

∑N

j=1
φj(Si)w

(l)
j,q∑N

j=1
w

(l)
j,q

(13)

The decision layer classifies the state Si based on the output

of all the summation layer neurons by using

D̂ = Dk if PDk(Si) = max{PD1(Si), . . . , PDK (Si)} (14)

d̂ = dm if Pdm(Si) = max{Pd1(Si), . . . , PdM (Si)} (15)

l̂ = lq if Plq (Si) = max{Pl1(Si), . . . , PlQ(Si)} (16)

where D̂, d̂, and l̂ denote the direction command, the dis-

tance command, and the actual distance travelled in re-

sponse to the previous command associated with the nearest

neighbour in the state space.

As explained above, the direction decisions made by the sub-

coach are non fuzzy. They are, up, down, right, left, forward,

and backward. Assuming that the conditions which influ-

ence the direction decision (e.g. distance to obstacles) are

the same for all the members in a small neighbourhood, the

sub-coach can use D̂ as the actual direction command (Di)

suitable for the current state.

In contrast to the direction commands, the distance com-

mands are fuzzy. They are, (e.g. go very little, go , go little,

etc.). As explained earlier, the fuzzy command interpreta-

tion algorithm in this implementation uses the actual dis-

tance travelled in response to the previous command. What

we obtain as d̂ is the fuzzy distance associated with the near-

est neighbour (e.g. little). However, the previous distance

corresponding to the nearest neighbour and the current state

cannot necessarily be equal. Therefore, d̂ cannot be directly

used for the current state.

To decide the correct distance command (di), the following

algorithm is used.

IF d̂ = very little THEN di = very little
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Fig. 3. Probabilistic neural network architecture (PNN).

ELSE IF d̂ = little THEN

IF l̂ = low THEN

IF li = low THEN di = little

ELSE di = very little

ELSE IF l̂ = medium1 THEN

IF li = low or medium1 THEN di = little

ELSE di = very little

ELSE IF l̂ = medium2 THEN

IF li = high THEN di = very little

ELSE di = little

ELSE IF l̂ = high THEN di = little

ELSE IF d̂ = medium THEN

IF l̂ = low THEN

IF li = low THEN di = medium

ELSE li = little

ELSE IF l̂ = medium1

IF li = low or medium1 THEN di = medium

ELSE di = little

ELSE IF l̂ = medium2

IF li = high THEN di = little

ELSE di = medium

ELSE IF l̂ = high THEN di = medium

ELSE IF d̂ = far

IF l̂ = low THEN

IF li = low THEN di = far

ELSE di = medium

ELSE IF l̂ = medium1

IF li = low or medium1 THEN di = far

ELSE di = medium

ELSE IF l̂ = medium2

IF li = high THEN di = medium

ELSE di = far

ELSE IF l̂ = high THEN di = far

The above algorithm can be explained as below.

Assume that d̂ and l̂ are medium and low respectively. As

explained above, these are the distance command and the ac-

tual distance travelled in response to the previous command

corresponding to the nearest neighbour. In other words,

for the neighbour state, the distance command had been

“medium”. User had issued that command after observing

that the actual distance travelled in response to the previ-

ous command was low. Assume that, after interpreting this

command, the robot had travelled 25 mm.

For the current state also, the sub-coach needs to issue a

similar command. For that, the only knowledge it has is the

above fact. Whatever the distance command, its interpreted

crisp value should be less than 25 mm because beyond that

point, the sub-coach doesn’t know whether there are any

obstacles or not. On the other hand, it should command

the robot to travel the maximum possible distance to ensure

the highest efficiency. Thus, if li too is low, then sub-coach

can issue “medium” as the next command. However, if li

is medium 1, medium 2 or high, then it has to issue “little”,

because otherwise, the interpreted crisp distance will be more

than 25 mm.

Once the sub-coach has been implemented and trained, test

movements have been performed with the sub-coach con-

trolling the robot. One of such test movements is shown in

Fig. 4.

The broken lines indicate all the guided training movements

performed by the human user. The knowledge base was built

using these movements. Solid lines indicate the test move-

ment. At places marked with circles, the sub-coach has taken
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Fig. 4. A test movement.

a direction decision and a distance decision. It can be ob-

served that the sub-coach alone could guide the robot arm

tip to come very closer to the final target. For finer move-

ments, the sub-coach can consult the human user.

Thus, we can see that it is possible to hand over coarse tasks

to the sub-coach while finer tasks are performed by the hu-

man user, in a sophisticated environment. This can largely

reduce the burden of a user who controls a robot with voice

commands. On the other hand, a user can control more than

one robots at the same time, just monitoring and helping

them as needed.

6. Conclusion
The learning of sub-coach has been discussed in the frame-

work of fuzzy coach-player model by applying a probabilistic

neural network.

The sub-coach was trained with training movements cover-

ing different areas of the working space of the robot. The

working space of the robot consisted of obstacles. A train-

ing movement was to move the arm-tip of the robot from a

point located far away to a target point. In doing so, the user

commanded the robot to move its tip little by little avoiding

obstacles. At each step, the user took two decisions, i.e. di-

rection to move and distance to move. From those decisions,

the sub-coach built its knowledge base.

After the training, test movements were made. In test move-

ments, all the direction decisions and distance decisions were

performed by the sub-coach without any intervention of a hu-

man. It was observed that the sub-coach alone could guide

the robot arm tip to come very closer to the final target

avoiding obstacles successfully. For finer movements, the

sub-coach can consult the human user.

Thus, we can see that it is possible to hand over coarse tasks

to the sub-coach while finer tasks are performed by the hu-

man user, in a sophisticated environment. This can largely

reduce the burden of a user who controls a robot with voice

commands. On the other hand, a user can control more

than one robot at the same time, just monitoring and help-

ing them as needed.

Using this model, it is possible to improve the usability of re-

dundant manipulators by controlling them using fuzzy voice

commands. Additionally, the same method may be suit-

ably applied for other robotic systems too, though it was

illustrated for a PA-10 redundant manipulator in this paper.

The most important feature of the proposed method is that

it utilizes the inherent fuzzy nature of spoken language com-

mands to generate possible commands for unknown cases.
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