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1. INTRODUCTION
Today, robots can be found frequently in human daily life,

and this trend is continuing. There are predictions of a one
robot per household revolution, analogous to the advance of
the ubiquitous PC. In such a world, there would be clear
advantages to robots that have some capacity to think like
humans.

During human-to-human interaction, it is obvious that
using various modalities is natural and easy for humans
communicating with one another. For this reason, many
researchers emphasize the key role of multimodal information
in human interactions [1, 2]. A multimodal system involves
two or more combined user input modes – such as speech,
touch, manual gestures, gaze, and head and body movements –
that are processed in a coordinated manner with a multimedia
system output [3]. In 1980, Bolt proposed a “Put that there”
system [4]. This system was the first system that processed a
speech and pointing gesture in parallel. In this system, a user
can make a voice command and he or she can specify what
“that” and “there” refer to by pointing to a certain object or a
place. Since the development of this system, robotics
researchers have been trying to develop a similar system for
human-robot interactions. Bischoff et al. designed the
humanoid robot HERMES [5]. In the HERMES system, inputs
are conveyed to the robot via voice, keyboard, or e-mail. The
transmitted inputs are combined and translated using natural
language processing technology. The system separates the
character input string into a sequence of words and numbers, 
and then gave the parsed-words a part of speech, finally
compare them with a list of prototype command sentence.
Another robot that can manipulate multimodal information is , 
developed by Perzanowski et al. [6]. Operating this robot, 
users can combine speech, gesture, and PDA inputs in various
ways. Although robots like HERMES and Coyote use 
multimodal information, present HRI research focuses mainly
on the processing of natural language to facilitate
communication with humans. A complementary relationship 
involving multimodal information is a main research topic in 
this area.

In previous studies, little attention has been paid to
situations in which a freestyle input sentence or insufficient
input information is given to the robot. Actually, many

situations arise in which insufficient or inadequate input 
information (as interpreted by the robot) is given. For example,
if we want a robot to fetch a cup, we can give commands such
as these: “Cup,” “Fetch a cup,” or even “Cup Fetch” (In
Korean, this would be correct grammar.). Although the “Cup” 
command should be supplemented to make the meaning of the
command clear, a person might correctly interpret the
command according to the context and go to fetch a cup. If a
robot always requests supplementary information whenever it 
receives insufficient input or when a user states a command in
an ungrammatical way, the human user will soon feel annoyed
and uncomfortable.
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An ideal robot would have the ability to understand a great
variety of user expressions. Although perfect understanding of
all kinds of user input is difficult to achieve, a human user
wants a robot to be able to understand his or her exact
intention. A robot also should understand a user command 
whether it is grammatically correct or not. To enable a robot to
have such understanding, a semantic symbol-based human
robot interaction method is proposed. By representing
multimodal information as semantic symbols, the user’s 
intentions can be converted into a form that can be understood
by the robot. These semantic symbols are given to the robot in
word level meaning. In section 2, we will discuss the meaning
of the semantic symbols: the symbols represent the objects and
places in the environment and the actions the robot is able to
carry out. At the end of section 2, tasks which a robot can
perform in the assumed environment will be referred. In 
section 3, we suggest a probabilistic model. The raw users’
inputs can be interpreted as specified tasks using these models.
In addition, the overall structure will be mentioned. In section
4, we will discuss the results of our evaluation. 

2. SEMANTIC SYMBOLS AND TASKS

2.1 Semantic symbols

In the proposed semantic symbol-based human robot 
interaction method, a semantic symbol is a basic element of a
user command. It is assumed that word-level semantic 
symbols are obtained from visual information or from voice 
commands. These symbols represent physical objects, actual
places, and robot actions. Figure 1 shows this relation. The
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semantic symbols represent some meaning, rather than vocal
or visual features, that is, they are abstracted to have meaning.
This paper is written under the supposition that an abstraction
that converts the features to symbols has already been 
implemented. When the semantic symbols are put
successively to the robot, these semantic symbols make a 
semantic symbol sentence. This paper focuses on a method of
abstracting the user’s intention (expressed by semantic symbol
sentence) to command tasks that are known by the robot. 

Fig. 1 Multimodal information and semantic symbol

2.2 Robot actions and environment 

We assume that robot actions are as follows: 
• Moving from one place to another place
• Grasping an object and releasing it 
• Seeing an object or a place. 
• Pressing a switch
The first our test bed for HRI is the mobile robot having

one manipulator and it provides the various services to a
human in his or her home. Semantic symbols are cautiously
chosen for this limited domain, and these symbols should be 
assigned to each action (Move, Grasp, See, Release, Press, and 
Return), according to the meaning of each symbol. The
moving action is composed of two semantic symbols, such as
“Move” for moving from A to B and “Return” for coming 
back to me. From this assumption, the robot cannot grasp two
objects simultaneously. If a robot can perform a high number
of actions, there will be many corresponding action semantic
symbols in the proposed method. 

This brief assumption also leads the problem about the
mobile robot’s navigation without collision; therefore, we 
used a virtual environment to verify our semantic model 
before testing in a physical environment. Our virtual robot
wandered throughout a virtual home without collision and
map based path planning. Figure 2 shows the virtual
environment that the robot navigated.

In this home environment, places such as a kitchen and a 
room are defined as elements of place in a semantic symbol
group. House fixtures, such as chairs, tables, televisions, or the
like are also defined as elements of place in a semantic symbol
group. Further, humans in the environment, including the user
have position information. Therefore, humans are included in
the place semantic symbol group. For simplicity, only a
two-person environment was considered in this study.
Semantic symbols related to objects in the home environment
are defined as object semantic symbols. The object semantic
symbol group includes the object semantic symbol which a
robot can grasp or press like cups, water bottle, flower, switch 
etc. To sum up, all the semantic symbols include the
following: the action semantic symbol group, the place
semantic symbol group, and the object semantic symbol
group.

In fact, many more semantic symbols should be added to
this system to enable an abundance of expression. However, 
any additional semantic symbols would be assigned to the
existing symbol definition groups. For instance, “book” is not 

yet included in our semantic symbols, but its symbol could be
assigned to an existing group. Defined groups and detailed 
semantic symbols, including action semantic symbols, are
arranged in Table 1. 

Table 1 Symbol groups and element of each group

Move Grasp SeeAction

Return Release Press

Kitchen Room Sink

Shelf Table Chair

Refrigerator Television Floor

Place

Wastebasket User Another person

Cup1 Cup2 Cup3

Water bottle Juice can Cola bottle

Milk bottle Flower Light switch 

Object

TV switch Apple Banana

Fig. 2 Assumed environment of a robot 

2.3 Tasks of robot

In a typical home environment, a user may want the robot 
to do many tasks. Noticing which task the user commands is 
the output of this system following a given input. According to
the survey report of the intelligent service robot project, 
conducted in Sweden by Z. Kahn [7], most tasks that ordinary
people want robots to do in the home environment are house 
chores, such as cleaning and helping with heavy loads. Such
tasks are mainly “Fetch and Carry” type tasks; therefore, this
study focused on “Fetch and Carry” tasks. The robots just can
do moving, grasping, seeing, releasing, and pressing and it 
performs tasks in the home environment. If we consider the
assumed environment and the basic actions that the robot can
carry out, the most probable expected tasks are the following:

• Task 1: Go somewhere
• Task 2: Fetch something
• Task 3: Move something to another place
• Task 4: Show me something/someplace 
• Task 5: Turn a switch
• Task 6: Take something from me and put it somewhere
To be sure, many combinations of each action could be

performed, such as “Move to another place and return, move
another place and return”. However, these combinations do
not have any meaning as a task of robot, so they are not 
thought over as a task. Moreover, one sentence is taken into
account as a command. That is, multiple tasks, such as “Fetch
a cup from kitchen, then take a water bottle from me and put it 
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on the table” is now not considered. We are now going on this
topic.

In this section, the relation between the multimodal
information and the semantic symbols is discussed as an input 
modality. Then, the robot environment and actions the robot is
capable of are presented. Objects and some locations in the
environment are expressed in a semantic symbol form, 
representing the “knowledge” of the robot and action semantic 
symbols are considered. Finally, tasks are assigned to the
robot in a given environment. In the next section, we will 
consider problems that may occur and discuss possible 
solutions.

3. USER INTENTION ABSTRACTION

3.1 Probabilistic model for intention abstraction

When a semantic symbol sentence is presented to the robot, 
the robot should understand the intended task commanded by
the user. When a user commands a task in semantic symbol,
however, the following problems could occur:

1) Same meaning, different expression: People usually do
not express their intention in a fixed manner. As mentioned in
the introduction to this paper, users alter their same intention
from time to time. If the developer of interaction channel
restricts input form, users would think this system is very poor
and feel uncomfortable. 

2) Insufficient input information: An insufficient 
information problem could occur if the robot interprets
information given to it as insufficient. A user may think that
he or she has given sufficient information to the robot, and
they would think that the interpretation of the input is
remained to the robot regardless of input information. This is
not a mistaken thought. Therefore, a robot should have some 
ability to interpret inputs that have deficient information, even
if such a capability is not flawless.

Many robotics researchers have tried to solve such
problems. A general approach to such problems is to make 
some rules: to construe the meaning of given information,
some rules governing interpretation are made, and the
information is then processed according to the rules. This
approach is mainly used in natural language processing (NLP) 
research. In NLP research, to make some rules the usual
grammar becomes the rules and this grammar model is
constructed based on a grammatical or a probabilistic 
approach. Currently, this method is providing good results in
some work domain. However, this approach also has some 
problems when information does not correspond to a given set 
of rules. Therefore, additional rules are needed whenever an
exception is found. Further, there would be many exceptions
because semantic symbol language heads for free expression
rather than grammatical or formal expression. For instance,
when a person wants a cup, he or she can express the
command with a variety of semantic symbols:

1) Move Kitchen Grasp Cup Move Me 
2) Kitchen Grasp Cup Move Me 
3) Kitchen Cup Me
4) Cup

Therefore, a probabilistic approach is considered rather
than a grammatical method to cover the many exceptional
cases. For a probabilistic model to be considered as an
interpreting input module, it should achieve the following:

1) The model (or models) can discriminate the meaning of 
input sentences to notice what task should be conducted. Since, 
specified tasks could have similar actions or semantic symbols

for objects or places, the model must be able to distinguish
similar input sentences.

2) The model (or models) is flexible, regardless of a given
input sentence dimension. If an input sentence is considered,
the dimension of the sentence cannot be estimated. That is, the
total number of semantic symbols in one sentence cannot be 
predicted because a user may select semantic symbols
arbitrary. Therefore, a model that can manage changeable
input dimensions is needed.

3) The model (or models) can represent a sequence of 
semantic symbol inputs. For example, although the commands 
“Move-Return” and “Return-Move” (for simplicity, objects, or
place semantic symbols are omitted) have the same semantic
symbols, the sequences are different and the different
sequences represent different meanings. 

A Markov model can be a used to achieve these goals. A
probabilistic model, the Markov model is widely used in
pattern classification problems. A Markov process is a process
that moves from state to state, depending on the previous n
states. This model bears its meaning following reasons. First, 
it can distinguish the meaning of inputs. Supposing that each
Markov model is assigned to each task, the transition
probabilities would be different according to the
characteristics of the individual task. Moreover, this model 
can settle input dimension problems, because endless
transitions between states are possible according to model type.
Finally, the sequence problem can be solved because the two
transition probabilities, from A state to B state and from B
state to A state, are different.

Therefore, a Markov model is constructed for our proposed
method. This model is an ergodic type, which has full
connections with other states, and it is a first order Markov
model. The start state and end state are connected to all 10
states respectively. (Naturally, the start state and end state are
not connected directly. This case cannot occur). Figure 3
shows the defined model. 

Fig. 3 Defined first order Markov model 

In a first order Markov model, state transition from a state 
depends on the previous state alone. This is a well-known
Markov assumption. This relation is expressed by equation (1) 
for a state sequence { }.
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Therefore, the probability of the total sequence is
calculated by equation (2). 

)|(),......,( 1
1

1 ii

n

i
n SSPSSP                      (2)

As mentioned in section 2 of this paper, all the semantic 
symbols in this method are divided into three subgroups: an
action group, a place group, and an object group. The object 

2007



group is re-divided into two sub groups, according to its 
semantic attributes: “graspable object” or “press-able object.”
Similarly, the place group is separated into two subgroups, 
according to the final position of the robot: “before the user”
and “general locations.” By dividing a state, the ability to
discriminate can be increased, but over-dividing a state may
cause performance problems.

The reason why the groups are referred at this moment is 
that these groups are used as states of the model. With regard
to a given action group, each element of the action group, such
as a basic action, becomes the state of the model like {Grasp}
state. Finally, start and end state is included. When counting
all states, total 12 states are defined. Table 2 shows the
arranged state and corresponding semantic symbol elements. 
For a simple description of the states, each state is numbered
like S1 in Table 2.

Table 2 Defined states and their elements

State State Attribute Element(s)

S1 Move Move

S2 Grasp Grasp

S3 See See

S4 Return Return

S5 Release Release

S6 Press Press

S7 Graspable
objects

Cup1, Cup2, Cup3,
Water bottle, Juice can,
Cola bottle, Milk bottle,
Flower, Apple, Banana

S8 Press-able
objects

Light Switch, TV switch 

S9 Before a user User

S10 Usual locations Kitchen, Room, Sink,
Shelf, Table, Chair,
Refrigerator, Television, 
Floor, Wastebasket,
Another Person

In a Markov model, each state corresponds to an
observation. A semantic symbol in an input sentence is an
observation in this case. If an observed input sequence is 
“Kitchen-Move,” the sequence probability is calculated using
equation (2).

P(observed input sequence) =
P(PLACE|START) P(MOVE|PLACE) P(END|MOVE)

If there were only one Markov model, the discrimination of
user intention would be difficult. Therefore, 6 Markov models
are constructed corresponding to 6 tasks. Since 6 models are
constructed, 6 result possibilities can be calculated from one
input sentence. The structure of these models is shown in Fig. 
4.

The transition possibilities in each model would be
different, because the input patterns have different
characteristics corresponding to the individual tasks. Hence,
the six result probabilities are calculated in relation to the 
given input, and a maximum probability can be found by
comparing the six calculation results. The task that has the
maximum probability is determined to be the user intention.
The raw user intention, which may be ambiguous, is 
abstracted to a task in this way. However, to guarantee the
capability to discriminate, transition probabilities that
encompass general input patterns are required. This issue will 

be discussed in the next section.

Fig 4 The structure of six models and input/output relation 

3.2 Questionnaire survey

Transition probabilities encompassing many situations are
necessary to achieve high classifying ability. Because the
transition probabilities are independent of time basically, they
should be obtained with care. To obtain transition probabilities,
a questionnaire survey is conducted. By allowing prototypical
users to command many specified tasks, general input patterns
can be obtained. Because individual users do not express
always express their task commands in the same manner,
various patterns can be acquired. Less formal inputs, which
may be ungrammatical, can be processed in this way.

The questionnaire survey was given to ordinary people.
Because the survey takers do not usually know how to specify
or command an input precisely, four or five example input 
commands for each task are provided as guides, though
various expressions of inputs are encouraged. However, to
avoid a simple translation from the questionnaire example
sentences, written in usual language to semantic symbol
language, specific circumstances are given to the subjects and
it is assumed that the position of objects or locations in the
environment is known by both a user and the robot. The
following are some examples for task 2, which specifies
“Fetch something”:

 You are now thirsty. You want to make the robot fetch
something to drink for you.

 You want to make the robot bring you a flower on the
table.

 You want to eat an apple that is on the sink. Make the 
robot fetch it for you.
In all, 56 subjects participated in the questionnaire survey.

71% of the subjects were male participants, and 29% were 
female. The average age of the subjects was 30.9 years. The
ages of the participants were from 20 to 59, and the age group
of 25 to 29 was the largest, at 41.1% of the participants. 33.9%
of the participants were employed and 66.1% were students.
Approximately 175 command samples for each task were 
obtained, so 1051 command samples were obtained for the 6
tasks. From the results of the survey, 6 transition probability
tables were prepared. Table 3 shows a section of the
probability table for task 3 as an example.

Table 3 Transition probabilities corresponding model 3 
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4. EVALUATION

An evaluation is conducted to check how well the robot
maps the commands specified by the users and the interpreted
results by the robot. This evaluation can be presented clearly
using a confusion matrix. Table 4, 5 shows the results. The
upper right row represents the commands that are understood
by the robot and the left column represents the user commands. 
A separate confusion matrix is constructed to verify whether
there is a difference between the commands that are included
in the probability tables and commands that are not included,
but Table 5 does not have the results of task 6 because 
example questionnaire about task 6 are not presented to the
user at first. Collecting more information about task 6 will be
performed.

Table 4 Confusion matrix: the test commands are included
in the transition probabilities

Table 5 Confusion matrix: the test commands are not
included in the transition probabilities

Tables 4 and 5 show that user commands were well
interpreted to some degree. Though these results were
obtained from only a few test commands, certain tendencies
can be observed from them. The obtained results show that the
proposed method has a promising ability to interpret a user’s
intention. For example, when the task 6 command, “Receive
water bottle from me, and put it on the shelf,” is expressed as
“Grasp-Shelf-Release,” the interpreting part made right

is given for the task 2 command, “Fetch the water bottle,” the
interpreted result is also correct. However, the incorrect results
occurred when the user commands were too abstract, that is,
the information presented is insufficient, such as “Grasp Cola”
for the task of “Fetch the cola.” In this case, even a human
could not interpret the sentence at one time.

Another problem is that the transition prob

answer. Similarly, when the “Move-See-Water bottle-Return”

ability tables do
no

5. CONCLUSIONS

This paper pres nce human-robot
int

eir input through a semantic 
sym

 model reflect the
ch

part is designed under the
ass

t contain all the cases. Although the transition probability
tables include general information corresponding to tasks, they
are not useful in some special cases. However, many situations
can be distinguished by multiplying the transition probabilities
sequentially, and there are many cases for which the input
sentence does not make sense when a very special input is 
presented.

ents a method to enha
eraction, by which a multimodal information source is a

human user’s voice command or visual information about
objects, places, and actions. This multimodal information is
represented as semantic symbols, and these semantic symbols
each have word-level meaning. Some robot actions are defined,
and the robot actions are also expressed as semantic symbols
through voice modality or by gestures. The robot tasks were
also discussed. In a domestic environment, probable tasks are 
selected and on choosing them the capability of a robot is
considered. In this study, six tasks were selected to evaluate
the method; the selected tasks were mainly related to fetch and
carry tasks, or simple errands.

After all, users command th
bol array. As a pre-user intention processor, the

interpreting module starts to interpret the input sentence. In 
other words, the robot tries to understand what task is
specified by the user. To select the most probable task, six
probabilistic models are constructed. These models are first
order Markov models, which have several advantages in
manipulating semantic symbol arrays. They can process a 
disordered input sentence, or one that has insufficient
information, to help the robot identify which task to perform.
The states of the model are defined, according to the semantic
attributes of the input symbols. A total of 12 states, including
the start and the end state, are selected.

The transition probabilities in each
aracteristics of each task. To obtain the transitions, a

questionnaire survey was conducted. By making ordinary
people command the specified tasks, many command patterns 
were acquired. Various input patterns could be stored.
Accordingly, the interpreting module could have the capability
to process an unexpected input sentence. Using the obtained
transition probabilities, six result probabilities corresponding
to six tasks can be calculated by the consecutive multiplication
of the transition probability. Because the models have
different characteristics that correspond to individual tasks, the
six result probabilities have different values. By comparing
these resultant probability values, a maximum probability can 
be found. Ultimately, the task that has a maximum value is 
considered the user-specified task. The evaluation of the
proposed method indicated that this method has good potential 
for user intention abstraction.

While the interpreting
umption that conversion of multimodal information, such

as voice commands and vision information has already been
implemented, an actual experiment confirming this
assumption has not yet been conducted. Further experiments
will be conducted to verify whether our method is practical. In
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addition, data about user commands are being collected 
continuously for more general transition probabilities. 
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