
ICCAS2004 August 25-27, The Shangri-La Hotel, Bangkok, THAILAND

1. INTRODUCTION

Recently, many researchers have been studying the robots
called a personal robot, which is mainly used at home result in
having a small size [1]. In addition, the personal robot has an
architecture that should support various technologies in order
to be easily extensible when new functions will be developed
and added to the robot capacities, without major perturbations
of the already existing robot system. There have been studies
about the architecture for robots [2-5], which is composed of
heterogeneous hardware components called module.
However, there have been few studies about interfacing
between modules in the module based personal robot. In [6],
VME and Ethernet are used as interfaces in the robot system,
which is separated into two networks of Ethernet and VME. If
the network configuration is changed in this fixed robot
system, the robot will become unworkable. And in [7], CAN is
only used as an interface for robot system. But there are
actually many kinds of interfaces for modules in the personal
robot like as buses (VCM, PCI) and networks (IEEE1394 [8],
USB [9], CAN [10], Ethernet, Wireless LAN, Bluetooth [11]).
So we should find out what is the more efficient interface-type
for personal robot modules, before it is used. The bus-type
interfaces like as VME and PCI need a motherboard and
sockets to connect modules. Therefore the size of the
integrated modules becomes large or it can be limited in its
size because of additional equipment. On the other hand it is
possible to solve these problems if a network is used as an
interface. Therefore the network-type interface is more
efficient than bus-type one. As we have referred, there are
many kinds of networks, which are potential interfaces for
personal robot. So the interface should have open architecture
because any network can be employed as an interface for
module based personal robot.
To support one or more open interface for the personal robot
effective middleware [12] structure is necessary. There are
many kinds of middleware, which is used in present like as
RMI [13], CORBA (Common Object Request Broker
Architecture) [14], and DCOM [15]. Most of these
middleware are based on TCP/IP [16] in order to access or
communicate with remote distributed objects. Although
ESIOP (Environment-Specific Inter-ORB Protocol) of

CORBA can support networks based on non-TCP/IP, it cannot
support several networks simultaneously. Therefore, these all
middleware don’t support heterogeneous interfaces. These
current middleware don’t seem to be suitable for supporting
open and heterogeneous interfaces in personal robot. The
middleware for the personal robot should be able to support
heterogeneous interfaces.
Another challenge is portability of overall middleware with
equally well functionality. So middleware has to be simple,
light and scalable in order to be easily adopted for the specific
platform such as embedded board, PC, handheld device.

In [17] it is proposed to divide middleware into two layers:
Network Adaptation Layer (NAL) as the lower layer and
Streaming Layer (SL) as the upper layer. Scope of this paper
is SL as mediator between network interfaces and application.
SL provide high level of abstraction and make communication
between distributed applications transparent as if they are
located in same module.

It is necessary to study about application management for
module based personal robot that supports open platform. This
paper suggests structure of Streaming Layer for personal
robot’s middleware and verifies performance using PC and
DSP board connected via CAN bus. In section 2, we propose
the middleware structure for personal robot. In section 3, we
describe SL architecture. In section 4 we show implementation
results followed concluding remarks in section 6.

2. MIDDLEWARE STRUCTURE

In this section, we define a middleware structure for
the personal robot, as shown on fig. 1. This middleware is
separated into network control level and application control
level by the middleware core. Network level is composed of
several network components, which are dependent elements
on each network.

Streaming Layer of Personal Robot's Middleware

Vitaly Li, Seongho Choo, Hyemin Shin and Hongseong Park

Dept. of Electrical and Computer Eng., Kangwon National University
192-1 Hyoja 2 Dong, Chuncheon, 200-701, Korea

Email: {vitaly, somebody, atlas, hspark}@control.kangwon.ac.kr
Tel: +82-33-250-6346 Fax: +82-33-242-2059

Abstract: This paper proposes streaming layer for personal robot’s middleware. Under assumption that robot has open architecture,
i.e. consists of modules created by different vendors and intercommunication between these modules is necessary, we have to
consider that there are many different network interfaces. To make communication between modules possible it is necessary to
develop new type of middleware. Such middleware has to support different platforms, i.e. OS, network interface, hardware, etc. In
addition, it is necessary to implement effective interface between network and application in order to manage inter application
communications and use network resources more effectively. Streaming layer is such interface that implements necessary
functionality together with simplicity and portability. Streaming layer provides high level of abstraction and makes communication
between distributed applications transparent as if are located in same module. With possibility of extension by user defined
application interfaces it is suitable for distributed environments, i.e. module based architecture including small-embedded systems
like as DSP board. To verify the proposed streaming layer structure it is implemented using C and tested.

Keywords: robot, middleware, streaming, application control

1936

mailto:@control.kangwon.ac.kr

Figure 1: Overview of the Middleware Structure

In this structure, the topmost and bottom layers are

completely independent, and one layer may be replaced
without changing the other. In other words, components of
network level can be changed or added without any
perturbations on application level. This structure, which is
mutually independent each layer is very suitable for the
personal robot to support open and heterogeneous interface
between modules. As shown in fig. 2, the middleware core
consists of two layers. The lower layer is Network Adaptation
Layer (NAL) and the upper layer is Streaming Layer (SL).
NAL supports several open and heterogeneous interfaces.
NAL manages open and heterogeneous networks in order to
transmit messages between modules with stability and
efficiency.

In order to communicate between modules, there should be
an addressing strategy like as IP under the heterogeneous
network environment.

In our module addressing strategy, an identifier that is called
module identifier (MDID) is assigned automatically by NAL
when the middleware of each module is initialized. MDID is a
global location reference. After NAL makes local information,
it informs the inter networks of the personal robot about its
information. By this way, each module can make routing
table. The routing table allows that the module addressing
strategy and message routing. A routing table including
special routing information because heterogeneous interfaces
have different packet sizes and link speeds each other. Based
on this information a data is delivered correctly from a source
module to a destination module via one or more interfaces.

SL manages applications-transaction using middleware
service and communication transactions, and marshals (or
unmarshals) application data (or network data) to network data
(or application data). It is described in details in next section.

Figure 2: Middleware Core

3. STREAMING LAYER ARCHITECTURE

Streaming layer is application management layer of personal
robot’s middleware. It has to be able to provide specific
service and must be simple, portable and reliable according to
personal robot’s tasks and necessity of adaptation for different
types of hardware and software. The functional diagram of

Streaming layer is shown in fig. 3.

Figure 3: Streaming Layer Structure

The main functions of SL have to be supported by every
network module. These functions are admission control,
registration service and message representer or marshalling
service. In addition there are two information structures in SL
– application table and interface table. Application table keeps
information about active applications in order to make
communications between them possible. There are two kinds
of applications from point of view of locality – local
applications and remote applications. Whenever new personal
robot’s application occurs it must register itself at the
middleware. The registration service generates global
application identifier (GAID) which consists of two parts –
local application identifier that is unique for this module and
module identifier (MDID) that is unique within network.
Then information about newly application is placed at local
application table and propagated into network so every
module adds this information at remote application table. The
sequence of registration is shown in fig. 4.

Figure 4: Local and remote registration in middleware

The interface table keeps information about services and data
provided by particular application. Several common interfaces
are embedded into middleware describing personal robot’s
specific applications. However SL provides possibility to
register new interfaces defined by user application. There are
constant mapping between application table and interface table
established at registration stage. This lets applications to
define whether requested data or service is available or not.
Admission control decides whether or not the remote
middleware accepts the request of the caller application using

1937

the remote application table. For example when an application
wants to read remote object from another application, there
should be target application and it should provide that object.
If there is no target application or this object is not provided
by existed target application, the request is unnecessary.
Another function of admission control is to decide whether
request has to be sent to remote middleware or it has to be sent
to the application at same module. The functionality of
Admission control is shown in figs. 5-6.

Figure 5: Local request

Figure 6: Remote request

Both figures show functionality of admission control on
receiving outbound request from local application. Admission
control checks both application table and interface table in
order to decide whether this request could be proceed or not.
The locality of the target application is known by GAID that is
consisted by local application identifier and MDID as
mentioned before. Hence, if MDID of source application
match MDID of target application there is no need to check
remote application table or marshal/unmarshal request.
The marshaller converts request sent from one application to
another into format suitable for transmission over network as
shown in fig. 7.

Figure 7: Marshalling/Unmarshalling

The conversion is made by using interface table associated
with target application and sent to remote module that is
defined from GAID. On the receiver side the reverse
conversion has to be done and finally the request is delivered
to the target application.
For instance, the middleware at the sending and receiving ends
of the communication channel have to agree on the size and
type of data. Therefore, the interface tables in both sides have
to have same information about requested interface.

4. IMPLEMENTATION

In this section, we show implementation of the proposed SL.
Our purpose in this test is to communicate between
applications and show portability of the proposed middleware
at all and SL in particular.
To verify the proposed SL structure, it is implemented using C
with CAN network interface. In order to have fully
configurable environment proposed by open source, Linux,
with kernel version 2.4.x is used as an operating system (OS)
for x86 based personal computer (PC). To show portability
issues the embedded DSP board platform TMS320VC33 with
32bit processor and two network interfaces (RS232C, CAN)
has been used. Middleware has been ported from Linux OS to
the DSP environment according to specific conditions, such as
single threading, limited memory and code optimization needs.
The test configuration is shown in fig. 8.

Figure 8: Test configuration

In our system “Sensor control” is a DSP’s application name.
“Movement control” and “Temperature control” is Brain’s
applications. DSP board has movement sensor connected that
is denoted by circle with “MS” inside in fig. 8. That sensor is
presented by DynaSight active sensor device. “Sensor control”
application is associated with “Sensor – Movement” interface
and has set of three real numbers to send which are
coordinates of tracked object related to the sensor position.
SL of Brain module manages an application table which
includes information of which applications are where they are,
what kind of interface, as shown in fig. 9.

1938

Figure 9: Application table of Brain Module

For instance, an application in Brain module periodically
requests data from movement sensor and if there is difference
between previous received data and current received data, it is
shows distance between previous and current point as shown
in figs. 10-11.

Figure 10: Distance tracking (no movement)

Figure 11: Distance tracking (movement detected)

As we have shown in this section, the proposed SL works well
under distributed environment and serves as light and portable
while keeps functionality.

5. CONCLUSIONS

We propose the streaming layer for personal robot’s
middleware, which is simple enough to be easily adopted for
any platform yet fully functional and support all necessary
tasks required for effective inter applications communication.
The proposed streaming layer is consist of tree main functions
and includes two data structures. With possibility of
registration user defined interfaces it is suitable for distributed
environments, i.e. module based architecture including
small-embedded systems like as DSP board. To verify the
proposed streaming layer structure it is implemented using C
and tested.

ACKNOWLEDGMENT

This research was partially supported by the Brain Korea 21
Program through Kangwon National University

REFERENCES

[1] T.Fukuta, R. Michlini, V. Potkonjak, S. Tzafestas, K.

Valavanis, and M. Vukorbrativic, "How far away is
"Artificial Man?"", IEEE Robotics & Automation
Magazine. pp. 66-73, Mar 2001

[2] Rondey A. Brooks, "A robust layered control system for
a mobile robot," IEEE Journal of Robotics and
Automation, RA-2(1):14-23, 1996

[3] Makelainen, T, Kaikkonen, J, Hakala, H," Interfacing
functional modules within mobile robots,” Intelligent
Robots and Systems '91.'Intelligence for Mechanical
Systems, Proceedings IROS'91. IEEE/RSJ International
Workshop on, 3-5 Nov 1991

[4] Fryer, J.A, McKee, G.T, Schenker, P.S, "Configuring
robots from modules: and object oriented approach ",
Advanced Robotics, 1997. ICAR'97. Proceeding. 8th
International Conference on, 7-9 Jul 1997

[5] Ishiguro, H., Kanda, T., Kimoto, K, Ishida, T," A robot
architecture based on situated modules" Intelligent
Robots and Systems, 1999. IROS'99. Proceedings. 1999
IEEE/RSJ International Conference on. Volume:3,199

[6] Chatila, R, Ferraz de Camargo, R, "Open architecture
design and inter-task/inter module communication for an
autonomous mobile robot," Intelligent Robots and
Systems'90. 'Towards a New Frontier of Applications',
Proceedings. IROS'90, IEEE International Workshop on,
3-6 Jul 1990

[7] Hans Utz, Stefan Sablatnog, Stefan Enderle, and Gerhard
Kraetzschmar,” Miro-Middleware for Mobile Robot
Applications”, Transactions on Robotics and automation,
vol. 18, No.4, August 2002.

[8] IEEE standard for a High Performance Serial Bus" IEEE
std 1394-1995, IEEE1394 std 1394a-2000"

[9] Universal Serial Bus Specification revision 1.1:
September 23. 1998

[10] CAN specification Part A and Part B
[11] Bluetooth SIG groups, Specification of the Bluetooth

System, Ver1.1 Draft Oct 2000.
[12] P.A.Bernstein, "Middleware: A Model for Distributed

System Services," Communications of the ACM, vol. 39,
pp.86-98, 1996

[13] RMI specification. http://java.sun.com/products/jdk/rmi
/index.html

[14] The Common Objcet Request Broker: Architecture and
Specification revision 2.3: Jun 1999

[15] COM and DCOM specification. http://www.microsoft.
com/com/resources/specs.asp

[16] William Stallings, "High-Speed Networks and Internets
Performance and Quality of Service" 2nd Edition. 2000

[17] Gun Yoon, Hyoung Yuk Kim, Ju Sung Lee, Hong Seok
Kim, Hong Seong Park, Middleware Structure for
Personal Robot, The 4th International Conference on
control and Automation (ICCA '03), pp.153-157, June,
2003

1939

http://java.sun.com/products/jdk/rmi
http://www.microsoft

	Main Menu
	Previous Menu
	Search CD-ROM
	Print

