
ICCAS2004 August 25-27, The Shangri-La Hotel, Bangkok, THAILAND

Realization and Canonical Representation of Linear Systems through I/O Maps

M. Sami Fadali∗ and Hossein M. Oloomi∗∗

∗Department of Electrical Engineering, University of Nevada, Reno, NV ,USA

(Tel: +1-775-784-6927; Fax: +1-775-784-6627; Email:fadali@ieee.org)
∗∗Department of Electrical Engineering, Purdue University at Fort Wayne, Fort Wayne, IN, USA

(Tel: +1-260-481-6035; Fax: +1-260-481-6281; Email:oloomi@engr.ipfw.edu)

Abstract: In this paper, we use the input and output maps and develop simple procedures to obtain realizations for linear

continuous-time systems. The procedures developed are numerically efficient and yield explicit formulae for the state space

matrices of the realization in terms of the system parameters, notably the system modes. Both cases of the systems with

distinct modes and repeated modes are treated. We also present a procedure for converting a realization obtained through the

input or output map into the Jordan canonical form. The transformation matrices required to bring the realization into the

Jordan canonical form are specified entirely in terms of the system modes.
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1. INTRODUCTION
The realization problem requires the determination of an in-

ternal state-space description of a system from the knowl-

edge of the input-output (I/O) data. The I/O data is often

represented in terms of the transfer function matrix or the

impulse response matrix of the system. The problem has

been thoroughly investigated for linear time-invariant sys-

tems and excellent discussions of the most popular solutions

are available in the standard texts on system theory, for ex-

ample, in [1], [4], and [6]. A relatively recent overview can

also be found in the article [9].

An alternative approach utilizing the input maps has been

proposed in [3]. These maps are useful in factorizing the

impulse response matrix and yield a worthwhile representa-

tion of a given transfer function matrix for the purpose of

building a balanced state space realization [7]. An important

property of the I/O maps, that makes them attractive from

the computational point of view, is that the system control-

lability and observabilty Gramians can be computed from

them directly without requiring solutions to the Lyapunov

equations. Unfortunately, the results presented in [3] do not

produce the state space realization matrices explicitly and,

as a result, the dependence of the system parameters, such

as the system modes, on these matrices cannot be studied

when such a study is desired.

In this paper, we present a computationally efficient formu-

lation of the input map realization approach taken in [3]. We

derive a minimal realization for linear continuous time sys-

tems when modes are distinct and then extend the results to

situations where modes are repeated. We obtain closed form

expressions for the controllability and observability Grami-

ans which greatly simplify the computation of the minimal

realization. The case of distinct modes is treated in Section

2 and that of repeated modes is considered in Section 3.

In Section 4, we use the results obtained in the previous two

sections and provide a method to derive the Jordan canon-

ical form of a realization obtained through the I/O maps.

This will be done by breaking down the impulse response

matrix of a system in terms of a number of simpler impulse

response matrices obtained through a parallel combination of

some elementary building blocks. The transformation matri-

ces required to bring the realization into the Jordan canonical

form are specified entirely in terms of the system modes. As

a result, we will show that a Jordan canonical structure of

a system can be obtained efficiently through the use of the

I/O maps.

2. REALIZATION WITH DISTINCT MODES
Consider a system whose impulse response matrix has dis-

tinct modes, that is,

H(t) =
[

F1 F2 . . . Fn

]
Iφ(t) = Iφr(t)F

bT

where

Iφ(t) =

⎡
⎢⎢⎢⎣

eλ1t

eλ2t

...

eλnt

⎤
⎥⎥⎥⎦⊗ Im, F bT =

⎡
⎢⎢⎢⎣

F1

F2

...

Fn

⎤
⎥⎥⎥⎦ ,

Iφr(t) =
[

eλ1t eλ2t . . . eλnt
]⊗ Im.

In this representation, Fi, i = 1, 2, . . . , n are l × m nonzero

constant matrices. It is assumed that the modes have both

the geometric as well as algebraic multiplicity of one, that

is, λi �= λj whenever i �= j.

The notions of the input and output maps, to be introduced

shortly, will rely on the computation of the impulse response

matrix derivatives

H(i)(t) =
[

F1 F2 . . . Fn

] diIφ(t)

dti

=
[

F1 F2 . . . Fn

]
⎡
⎢⎢⎢⎣

λi
1e

λ1t

λi
2e

λ2t

...

λi
neλnt

⎤
⎥⎥⎥⎦⊗ Im

=
[

λi
1F1 λi

2F2 . . . λi
nFn

]
Iφ(t).

Using H(t) and these derivatives, the so-called coefficient
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matrix LV can be formed as

Vi(t) =

⎡
⎢⎢⎢⎣

H(t)

H(1)(t)
...

H(i)(t)

⎤
⎥⎥⎥⎦ = LV Iφ(t) = Iφr(t)LV

LV =

⎡
⎢⎢⎢⎣

F1 F2 . . . Fn

λ1F1 λ2F2 . . . λnFn

...
...

.. .
...

λi
1F1 λi

2F2 . . . λi
nFn

⎤
⎥⎥⎥⎦ .

Finally, the reduced forms of the coefficient matrix LV can

be utilized to define the input and output maps. The input

map is defined as

L(t) = eAtB = LaIφ(t)

where La is the row reduced form of LV , while the output

map is defined as

R(t) = CeAt = Iφr(t)Ra

where Ra is the column reduced form of LV .

For a strictly stable system, i.e., when �(λi) < 0 for i =

1, . . . , n, the input map has the controllability Gramian Wc

and the observability Gramian Wo. Using the Kronecker

product for matrices, these Gramians can be written down

explicitly as

Wc =

∫ ∞

0

L(t)L∗(t)dt = La

[∫ ∞

0

Iφ(t)I∗
φ(t)

]
L∗

a

= La

[
−1

λi + λ∗
j

]
⊗ ImL∗

a,

Wo =

∫ ∞

0

R∗(t)R(t)dt = R∗
a

[∫ ∞

0

I∗
φr(t)Iφr(t)

]
Ra

= R∗
a

[
−1

λ∗
i + λj

]
⊗ ImRa.

Both Gramians are symmetric, and due to the stability as-

sumption, they are also positive definite. These properties

allow efficient factorizations of Wc and Wo into their lower

and upper diagonal factors using the Cholesky decomposi-

tion [5]. Specifically, let T be the normalizing transformation

for the input map obtained from the Cholesky decomposi-

tion. T is a nonsingular transformation whose computation

is known to be numerically stable; it produces the orthonor-

malized input map

L̃(t) = L̃aIφ(t) = TLaIφ(t),

where L̃a =
[

L̃a1 L̃a2 . . . L̃an

]
, L̃ai ∈ Rn×m, i =

1, . . . , n. A similar procedure can be utilized to normalize

the output map as

R̃(t) = IφrR̃a = IφRaS,

where R̃a =
[

R̃a1 R̃a2 . . . R̃an

]bT
, R̃ai ∈ Rn×�, i =

1, . . . , n. Note that T is a normalizing transformation in the

sense that the transformed Gramians satisfy the normalized

property

W̃c =
∫∞
0

L(t)L∗(t)dt = La

[∫∞
0

Iφ(t)I∗
φ(t)

]
L∗

a = In,

W̃o =
∫∞
0

R∗(t)R(t)dt = R∗
a

[∫∞
0

I∗
φr(t)Iφr(t)

]
Ra = In.

We are now in a position to state the main result of this

section.

Theorem 1 Let �(λi) < 0 for i = 1, . . . , n. Then the nor-

malized input map yields the state space realization

A =
∑n

i=1

∑n

j=1
−λi

λi+λ∗
j
L̃aiL̃

∗
aj,

B =
∑n

i=1
L̃ai,

C =
∑n

i=1

∑n

j=1
−1

λi+λ∗
j
FiL̃

∗
aj,

while the normalized output map yields the realization

A =
∑n

i=1

∑n

j=1

−λj

λ∗
i
+λj

R̃∗
aiR̃aj,

B =
∑n

i=1

∑n

j=1
−1

λ∗
i
+λj

R̃∗
aiFj,

C =
∑n

i=1
R̃ai.

Proof Observe that the derivatives of the normalized input

and output maps are given, respectively, by

dL̃(t)
dt

= L̃a
dIφ(t)

dt
= L̃a

⎡
⎢⎣

λ1e
λ1t

...

λnd eλnt

⎤
⎥⎦⊗ Im

dR̃(t)
dt

=
dIφr(t)

dt
R̃a =

[
λ1e

λ1t . . . λnd eλnt
]⊗ ImR̃a.

Thus, the state matrix is given by

A =
dL̃(t)

dt
L̃∗(t)dt = L̃a

[∫ ∞

0

dIφ(t)

dt
I∗

φ(t)

]
L̃∗

a

= L̃a

[
−λi

λi + λ∗
j

]
⊗ InL̃∗

a =

[
−λi

λi + λ∗
j

L̃aiL̃
∗
aj

]
i,j=1,... ,n

=

n∑
i=1

n∑
j=1

−λi

λi + λ∗
j

L̃aiL̃
∗
aj.

The input matrix is computed as

B = eA0B = L̃(0) = L̃aIφ(0) =

n∑
i=1

L̃ai,

and the output matrix is found as

C = CW̃c =

∫ ∞

0

H(t)L̃∗dt = F

[∫ ∞

0

Iφ(t)I∗
φ(t)dt

]

= F

[
−1

λi + λ∗
j

]
⊗ ImL̃∗

a =

n∑
i=1

n∑
j=1

−1

λi + λ∗
j

FiL̃
∗
aj .

This completes the proof for the first half of the theorem.

The proof for the second half of the theorem can be given in

a similar way by using the output map instead of the input

map. In particular, the matrix B is obtained with the help

of the transformed observability Gramian while the matrix

C is obtained through the evaluation of the output map at

t = 0. Details are omitted for brevity. �
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3. REALIZATION WITH REPEATED
MODES

For repeated modes, we consider the impulse response matrix

H(t) =
[

Fi1 Fi2 . . . Fini

]n
i=1

Iφ(t)

where

Iφ(t) =

⎡
⎢⎢⎢⎣

eλ1

eλ2

...

eλn

⎤
⎥⎥⎥⎦⊗ Im, eλi (t) =

⎡
⎢⎢⎢⎣

eλi

teλi

...

tni−1eλi

⎤
⎥⎥⎥⎦ ,

the integer ni is the multiplicity of the i-th mode, and n is

the number of distinct modes. Although a mode does not

necessarily have the geometric multiplicity of one, its alge-

braic multiplicity is still assumed to be one. In particular, it

is assumed that Fij are nonzero constant matrices of appro-

priate dimensions and λi �= λj whenever i �= j.

For the repeated modes case, computation of the derivatives

of H(t) are more involved. However, using a variant of the

well known identity (see [1], p. 203])

di(uv)

dti
=

i∑
k=0

(
i

k

)
u(k)v(i−k),

namely,

di(tjeλt)

dti
=

min(i,j)∑
k=0

(
i

k

)
j!

(j − k)!
tj−kλi−keλt,

one can see that the derivatives of the impulse response ma-

trix can be computed explicity as

H(i)(t) =
[

F�1 F�2 . . . F�n�

]n
�=1

diIφ(t)

dti

=
[

λi
�F�1 + iλi−1

� F�2 + . . . . . . λi
�F�n�

]n
�=1

Iφ(t).

Once again, the coefficient matrix LV can be formed using

H(t) and its derivatives as

Vi(t) =

⎡
⎢⎢⎢⎣

H(t)

H(1)(t)
...

H(i)(t)

⎤
⎥⎥⎥⎦ = LV Iφ(t),

where the expression for LV is given in the Appendix. As

in the distinct modes case, we may use the row reduction

procedure to obtain a set of linearly independent rows from

the coefficient matrix LV to write the input map in the form

L(t) = LaIφ(t).

Next, we use the identity∫
tneλtdt = eλt

n∑
r=0

(−1)r n!tn−r

(n − r)!λr+1
,

to evaluate the integral

Wij(t) =

∫ ∞

0

eλi(t)e
∗
λi

(t)dt

=

∫ ∞

0

[
tk+�e(λi+λ∗

j )t
]

k = 0, 1, . . . , ni − 1

	 = 0, 1, . . . , nj − 1

dt

=

[
(−1)k+�+1 (k + 	)!

(λi + λ∗
j )k+�+1

]
k = 0, 1, . . . , ni − 1

	 = 0, 1, . . . , nj − 1

.

This result helps us express the controllability Gramian Wc

in the closed form

Wc = La[Wij]i,j=1,... ,nd ⊗ ImL∗
a,

where Wc is a symmetric matrix.

For a strictly stable system, i.e., when �(λi) < 0 for i =

1, . . . , n, Wc is a positive definite matrix and can be factor-

ized using the Cholesky decomposition [5]. The Cholesky

factors can be used to transform L(t) into the orthonor-

malized input map L̃(t) with the transformed controllability

Gramian W̃c satisfying the normalized property as discussed

in the previous section.

We now state the main result of this section.

Theorem 2 Let �(λi) < 0 for i = 1, . . . , n. Then the nor-

malized input map yields the state space realization

A =
∑nd

i=1

∑n

j=1
L̃aiAijL̃

∗
a,

B =
∑n

i=1
L̃ai1,

C =
∑n

i=1

∑n

j=1
FiWijL̃

∗
aj,

where

Aij =
[

(−1)k+�+1

(λi+λ∗
j
)k+� (k + 	 − 1)!

×
{

λi
λi+λ∗

j
(k + 	) + k

}]
k = 0, 1, . . . , ni − 1

	 = 0, 1, . . . , nj − 1

,

Wij =
[
(−1)k+�+1 (k+�)!

(λi+λ∗
j
)k+�+1

]
k = 0, 1, . . . , ni − 1

	 = 0, 1, . . . , nj − 1

.

Proof By a direct calculation we have

dL̃(t)

dt
= L̃a

⎡
⎢⎢⎢⎣

λ�e
λ�t

(tλ� + 1)eλ�t

...

(tn�−1λ� + (n� − 1)tn�−2)eλ�t

⎤
⎥⎥⎥⎦

n

�=1

⊗ Im.

Thus, the state matrix of the realization is given by

A =
dL̃(t)

dt
L̃∗(t)dt = L̃a

[∫ ∞

0

dIφ(t)

dt
I∗

φ(t)

]
L̃∗

a

= L̃a[Aij]i,j=1,... ,n ⊗ ImL̃∗
a =

n∑
i=1

n∑
j=1

L̃aiAijL̃
∗
a,

where

Aij =

[∫ ∞

0

(λit
k+� + ktk+�−1)e(λi+λ∗

j )tdt

]
k = 0, 1, . . . , ni − 1

	 = 0, 1, . . . , nj − 1

=

[
(−1)k+�+1 λi(k + 	)!

(λi + λ∗
j )

k+�+1
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+k(−1)k+� (k + 	 − 1)!

(λi + λ∗
j )k+�

]
k = 0, 1, . . . , ni − 1

	 = 0, 1, . . . , nj − 1

=

[
(−1)k+�+1

(λi + λ∗
j )k+�

(k + 	 − 1)!

×
{

λi

λi + λ∗
j

(k + 	) + k

}]
k = 0, 1, . . . , ni − 1

	 = 0, 1, . . . , nj − 1

.

The input matrix is given by

B = L̃(0) = L̃aIφ(0) =

n∑
i=1

L̃ai1,

and the output matrix is given by

C =

∫ ∞

0

H(t)L̃∗(t)dt = F

[∫ ∞

0

Iφ(t)I∗
φ(t)dt

]
L̃∗

a

=

nd∑
i=1

nd∑
j=1

FiWijL̃
∗
aj .

�

Note that a similar type of realization can be obtained by

employing the output map instead of the input map as was

done in Theorem 1. Details are omitted here for brevity.

4. JORDAN CANONICAL
REPRESENTATION

The results of Theorems 1 and 2 suffer from two shortcom-

ings, namely, in each case

1. The computation is carried out on the entire set of data

at once, and

2. In the case of complex modes, the matrices produced for

the realization are complex.

In this section, we will show that both shortcomings can be

alleviated. To this end, we study the problem as a realiza-

tion problem for a parallel system of elementary problems,

each of which serving as a building block for the original

problem. The discussion will be limited to the single-input

single output systems and, for the case of repeated modes,

only real modes with multiplicity of two will be considered.

Considerations for more general cases require further efforts

and is not pursued here.

Case 1 Consider a system with the impulse response

h(t) = feλt, t ≥ 0,

where λ < 0. Using our earlier results we have Iφ(t) = eλt

and LV = f . Thus, the reduced form of LV is La = 1, and

L(t) = LaIφ(t) = Iφ(t) = eλt. A simple calculation gives

Wc = 1/(−2λ) with the Cholesky factor Wc� = 1/
√−2λ.

Hence, L̃a =
√−2λ. Moreover,

∫∞
0

dIφ(t)

dt I∗
φ(t)dt = −1/2.

Therefore, the realization of h(t) is given by

Σh =

[
λ

√−2λ
f√−2λ

0

]
.

Case 2 Consider a system with the impulse response

h(t) = f1e
λt + f2te

λt, t ≥ 0,

where �(λ) < 0. This form of h(t) represents the impulse

response of a system with a repeated real mode of multiplic-

ity 2. The vector Iφ(t) and the coefficient matrix LV of the

system are

Iφ(t) =

[
eλt

teλ∗t

]
, LV =

[
f1 f2

λf1 + f2 λf2

]
.

The reduced form of LV is La = I2 so that L(t) = Iφ(t).

This yields

Wc =
1

−2λ

[
1 1

−2λ
1

−2λ
1

2λ2

]
, Wc� =

1√−2λ

[
1 0
1

−2λ
1

−2λ

]
,

where Wc = W ∗
c�Wc�. Therefore, L̃a = W−1

c� La = W−1
c� is

given by

L̃a =
√−2λ

[
1 0

−1 −2λ

]
.

Finally, by computing the integral∫ ∞

0

dIφ(t)

dt
Iφ(t)∗dt =

1

−2λ

[
λ −1/2

1/2 0

]
,

we obtain the realization

A = L̃a

[∫∞
0

dIφ(t)

dt
Iφ(t)∗dt

]
L̃∗

a =

[
λ 0

−2λ λ

]
,

B = L̃aIφ(0) =
√−2λ

[
1

−1

]
,

C = F
[∫∞

0
Iφ(t)I∗

φ(t)dt
]
L̃∗

a = 1√−2λ

[
f1 − f2

2λ − f2
2λ

]
.

Evidently, the realization produced by the algorithm is not

in the canonical form. The following lemma provides the

transformation of the realization into the canonical form.

Lemma 1 The canonical transformation for the repeated

modes case with multiplicity two is given by

Tλ =
1√−2λ

[
1 + 2λ 1

−2λ 0

]
, T−1

λ =
√−2λ

[
0 1

−2λ

1 1 + 1
2λ

]
.

Proof Let Tλ =

[
t1 t2

t3 t4

]
. Then, a straightforward calcu-

lation, based on the similarity transformation

Tλ

[
λ 0

−2λ λ

]
T−1

λ =

[
λ 1

0 λ

]
,

shows that the entries of the transformation are constrained

as 2t22λ = 1, t2t3 = −1, t4 = 0. This gives the solution

t2 = 1/
√−2λ, t3 = −√−2λ, t4 = 0, with t1 serving as a free

parameter, i.e.,

Tλ =
1√−2λ

[
t1 1

−2λ 0

]
.

We choose t1 so that the input matrix of the realization is

in the canonical form. Since in the new coordinate

TλB =

[
t1 − 1

−2λ

]
,
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So, the claim is proved by setting t1 = 1+2λ. Note that the

matrices of the new realization now take the canonical form

TλAT−1
λ =

[
λ 1

0 λ

]
,

TλB = 2λ

[
1

−1

]
,

CT−1
λ = 1

−2λ

[
f2 f1 + f2

]
.

�

Case 3 Consider a system with the impulse response

h(t) = feλt + f∗eλ∗t, t ≥ 0,

where �(λ) < 0. This form of h(t) represents the im-

pulse response of a harmonic oscillator where λ = −(ζ +

j
√

1 − ζ2)ωn, f = jωn/(2
√

1 − ζ2), 0 < ζ ≤ 1, and ωn > 0.

The vector Iφ(t) and the coefficient matrix LV of the system

are

Iφ(t) =

[
eλt

eλ∗t

]
, LV =

[
f f∗

λf λ∗f∗

]
.

The reduced form of LV is La = I2 so that L(t) = Iφ(t).

This yields the controllability Gramian

Wc =
−1

2�(λ)

[
1 �(λ)/λ

�(λ)/λ∗ 1

]
.

Since Wc > 0, the Cholesky decomposition of Wc = W ∗
c�Wc�

is found to have the factor

Wc� =
1√

−2�(λ)

[
1 0

�(λ)/λ∗ √
1 −�(λ)2/|λ|2

]
,

from which we have L̃a = W−1
c� La = W−1

c� , where

W−1
c� =

√
−2�(λ)√

1 −�(λ)2/|λ|2
[ √

1 −�(λ)2/|λ|2 0

−�(λ)/λ∗ 1

]
.

Finally, by computing the integral∫ ∞

0

dIφ(t)

dt
Iφ(t)∗dt =

−1

2�(λ)

[
λ �(λ)

�(λ) λ∗

]
,

we obtain the realization

A =

[
λ 0

(1 − λ/λ∗)�(λ)/
√

1 −�(λ)2/|λ|2 λ∗

]
,

B =
√

−2�(λ)

[
1

(1 −�(λ)/λ∗)/
√

1 − �(λ)2/|λ|2
]

,

C = f√
−2�(λ)

[
1 −�(λ)/λ∗ −

√
1 −�(λ)2/|λ|2

]
,

where, in obtaining C, we used the fact that �(f) = 0 which

implies f∗ = −f .

Unfortunately, the matrices produced above are defined over

Cn. Therefore, for this realization to be useful, a de-

complexification transformation must be performed to bring

the entries of these matrices into real forms. The following

lemma shows that such a transformation can be character-

ized entirely in terms of the system modes.

Lemma 2 The de-complexification transformation for a pair

of complex conjugate modes is given by

Tλ = 1−j
2

[
j(1 − j�(λ)/λ∗)

√
1 −�(λ)2/|λ|2

1 + j�(λ)/λ∗ j
√

1 −�(λ)2/|λ|2
]

,

T−1
λ = 1+j

2
√

1−�(λ)2/|λ|2

[
−j
√

1 −�(λ)2/|λ|2
1 + j�(λ)/λ∗√

1 − �(λ)2/|λ|2
−j(1 − j�(λ)/λ∗)

]
.

Proof We construct the transformation in two steps. In the

first step, we bring the system matrix into the diagonal form,

and in the next step, we de-complexify the result using the

similarity transformation

Q

[
λ 0

0 λ∗

]
Q−1 =

[
�(λ) −
(λ)


(λ) Re(λ)

]
,

where

Q =

[
j −1

1 −j

]
, Q−1 =

1

2

[
−j 1

−1 j

]
.

The transformation required by the first step, namely,

P

[
λ 0

ψ λ∗

]
P−1 =

[
λ 0

0 λ∗

]
, ψ =

(1 − λ/λ∗)�(λ)√
1 − �(λ)2/|λ|2

,

entails more work due to the redundancy inherited from

the triangular structure of the system matrix. We use

this redundancy to our advantage for the purpose of de-

complexification. To this end, we partition P as

P =

[
p1 p2

p3 p4

]
,

and observe that the constraints

p1 �= 0, p3 �= 0, p4 �= 0, p2 = 0, p3(λ − λ∗) + p4ψ = 0,

are to be imposed on the entries of P , the last of which gives

p4 = −
(

λ − λ∗

ψ

)
p3.

Thus, the free parameters p1 and p3 are to be chosen so that

the transformation Tλ = QP renders the original realization

into the de-complexified form. This transformation is given

by [
�(λ) −
(λ)


(λ) �(λ)

]
= Q

[
λ 0

0 λ∗

]
Q−1

= QP

[
λ 0

ψ λ∗

]
P−1Q−1

= Tλ

[
λ 0

ψ λ∗

]
T−1

λ ,

where

Tλ =

[
jp1 − p3

(
λ−λ∗

ψ

)
p3

p1 − jp3 j
(

λ−λ∗
ψ

)
p3

]
.

Since the system matrix is already de-complexified without

further restrictions on p1 and p3, we select these parame-

ters so that the remaining matrices, namely the input and
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output matrices, are de-complexified as well. Evidently, the

de-complexification of one of these two matrices will suffice,

so we proceed arbitrarily with the decomplexification of the

input matrix

B =
√

−2�(λ)

[
1

β

]
, β =

1 − �(λ)/λ∗√
1 − �(λ)2/|λ|2

,

which has the representation

TλB =
√

−2�(λ)

[
jp1 + (α − 1)p3

p1 + j(α − 1)p3

]
, α =

(
λ − λ∗

ψ

)
β

in the new coordinate system. Further restriction can be

imposed by seeking a canonical structure which, in turn,

translates into the conditions jp1 + (α − 1)p3 = 1, p1 +

j(α − 1)p3 = 1. Solving these equations yields the solution

p1 = 1−j
2

, p3 = 1−j
2

(
1

α−1

)
, and the resulting transformation

is

P =
1 − j

2λ∗

[
λ∗ 0

−�(λ) −λ∗√1 −�(λ)2/|λ|2
]

,

P−1 =
2

1 − j

[
1

−�(λ)/(λ∗√1 −�(λ)2/|λ|2)
0

−1/
√

1 − �(λ)2/|λ|2
]

,

which was obtained upon back substitution. Therefore, the

overall transformation, Tλ, can be obtained from Tλ = QP ,

and its inverse, T−1
λ , from T−1

λ = P−1Q−1. It is straightfor-

ward to verify that the results of this computation agree with

the ones claimed by the lemma. Finally, we observe that, un-

der this transformation, the matrices of the realization take

the canonical form

TλAT−1
λ =

[
�(λ) −
(λ)


(λ) �(λ)

]
,

TλB =
√

−2�(λ)

[
1

1

]
,

CT−1
λ = jf√

−2�(λ)

[
−1 1

]
.

Note that the transformed output matrix has real entries

since f is purely imaginary. �

5. APPENDIX
The coefficient matrix for the repeated modes case is given

by (see the equations leading to Theorem 2)

LV =

⎡
⎢⎢⎢⎣

[
F�1 F�2 . . . F�n�

]n
�=1[

λ�F�1 + F�2 λ1F�2 + 2F�3 . . . λ�F�n�

]n
�=1

...[
λi

�F�1 + iλi−1
� F�2 + . . . λi

�F�2 + 2iλi−1
� F�3 + . . . . . . λi

�F�n�

]n
�=1

⎤
⎥⎥⎥⎦ .

6. CONCLUSION
In this paper, we have utilized the I/O maps for the purpose

of realizing linear continuous time systems. We have pro-

vided procedures based on which the state space matrices of

a realization can be obtained explicitly and efficiently. Com-

putation of the realization uses the system controllability and

observability Gramians and does not require the solution

of Lyapunov equations. The procedures developed handle

systems with distinct modes as well as those with repeated

modes. We have also addressed the question of transform-

ing a given realization to its Jordan canonical form once the

realization has been obtained through the input or output

map. To this end, the required transformations have been

explicitly derived. The numerical examples that have been

worked out by the authors (but not provided here for the

lack of space) demonstrate that the developed procedures

are easy to apply in practice and yield the desired results

with a high computational efficiency.
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