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Abstract: This paper presents the construction of an active suspension system of a one-wheel car model by using fuzzy reasoning. 
The car model is approximately described by a nonlinear two degrees freedom system subject to excitation from a road profile, and 
the active control force is constructed by actuating a pneumatic actuator, and the degradation of the performance due to the delay of 
the pneumatic actuator is improved by inserting a compensator. The fuzzy control is obtained by single input rule modules fuzzy 
reasoning, and the excitation from the road profile is estimated by using a disturbance observer. The experimental result shows that 
the proposed active suspension system much improves the performance in the vibration suppression of the car model. 
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1. INTRODUCTION )( 21 zzf −  is  

     Active suspension systems for car models are recently 
much interesting as they more improve the ride comfort of 
passengers than passive suspension systems in high-speed 
ground transportation. Generally, linear active suspension 
systems are derived by the optimal control theory on the 
assumption that the car model is described by a linear 
system [1-3]. However, as the car models are practically 
denoted as a complicated system including non-negligible 
non-linearity and uncertainty, active suspension systems 
are derived by nonlinear and/or intelligent approaches, for 
example, fuzzy reasoning [4-6], neural network [7], and 
sliding mode control [8]. It is seen from the numerical and 
experimental results that such active suspension systems 
provide more satisfactory performance, but necessitate 
more increasing loads in the controllers, comparing with 
the linear active suspension systems. 
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where  is a positive constant. The non-linearity of the 
restoring force means that the restoring force becomes 
stronger as the suspension deflection does larger. The 
gravity mainly due to the masses,  and , is 
supported by the mass  whose displacement is 
denoted as , and the coil spring with the stiffness . 
The tire part of the wheel is denoted as the stiffness , 
and the excitation from a road profile is assumed the signal 
generated by the electric vibrator connecting the signal 
function generator. The damping force of the suspension 
part is assumed due to the Coulomb damping caused by 
contact with two polls and the viscous damping caused by 
the pneumatic cylinder, and it is assumed linear with the 
damping coefficient  as considered relatively small. 
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The purpose of this paper is to propose an active 
suspension system of a one-wheel car model that is 
approximately described as a nonlinear two degrees of 
freedom system subject to excitation from a road profile by 
using fuzzy reasoning and a disturbance observer. The 
active control for the suspension system to be proposed 
here is composed of the fuzzy control obtained by single 
input rule modules (SIRMs) fuzzy reasoning [5-6] including 
the estimate of the excitation from the road profile. The 
active control force is constructed by actuating a pneumatic 
actuator, and the performance degradation due to the delay 
of the pneumatic actuator is improved by inserting a 
compensator following the accelerometer to measure the 
acceleration of the car body [5]. 

   Then, the equations of motion for the car model are 
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where  is the active control constructed by actuating a 
pneumatic actuator, and  is the exciting force generated by 
the electric vibrator. Dividing both sides of equation (4) by , 
neglecting the resultant first term on the left-hand of equation 
(4) as considered relatively small compared with other terms, 
defining that  
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2. ONE-WHEEL CAR MODEL 

   The experimental apparatus of a one-wheel car model, 
vertically confined by two polls, due to the active control 
force generated by the pneumatic actuator is constructed as 
shown in Fig. 1. The masses of the car body and the wheel 
are respectively denoted as  and whose 
displacements are respectively corresponding to  and 

. The restoring force of the suspension part is 
practically assumed to be nonlinear, and it is constructed 
by two coil springs with the stiffness  or by four coil 
springs with the stiffness ' , depending on the 
suspension . Then, the nonlinear restoring force  
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and substituting the above definitions into equation (3), then 
the resultant equation becomes 
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                           Fig.1  Experimental apparatus of one-wheel car model 
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Therefore, the one-wheel car model described by equations (2) 
and (5) indicates a nonlinear two degrees of freedom system 
subject to the excitation from the road profile.  

The control part in the one-wheel car model provides the 
accelerometers ( 1  and 2 ), the velocity sensors (

3
 and 

4 ), and the linear encoders ( 65  and 7 ). The control 
signal is calculated by using the personal computer based on 
the measurement data of the state variables through the A/D 
converters and the counters. The control valve of the pneumatic 
actuator is operated by the control signal through the D/A 
converter and the power amplifier, and the active control  is 
constructed by actuating the pneumatic actuator as =77.0 , 
that is experimentally obtained, where  denotes the voltage 
of the control valve.  

S S S
S , SS S

u
u v

v

3. ACTIVE SUSPENSION SYSTEM 

The active suspension system to be proposed here is 
constructed as follows. Firstly, a compensator is constructed to 

improve the degradation of the performance in the vibration 
suppression of the car model due to the delay of the pneumatic 
actuator and it is inserted by following the accelerometer to 
measure the acceleration of the car body. Secondly, the active 
control is derived as the fuzzy control using the SIRMs fuzzy 
reasoning including the estimate of the excitation from the road 
profile obtained by using the disturbance observer.  

3.1  Compensator 

The degradation of the performance in the vibration 
suppression of the car model due to the delay of the pneumatic 
actuator is improved by inserting the compensator following 
the accelerometer to measure the acceleration of the car body. 
The transfer function for the pneumatic actuator was 
experimentally identified by the step response as  
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where . Assuming that the transfer function for VkPaKa /90=
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the compensator is    
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then the parameters characterizing  are determined from 

the frequency response function G  for the 

transfer function .  
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3.2  Fuzzy reasoning  

The fuzzy control is obtained by using the SIRMs fuzzy 
reasoning [5-6]. It is a well-known fact that the number of 
fuzzy control rules to infer the defuzzificated values of the 
variables in the conclusion parts exponentially more increases 
if the number of the variables in the precondition parts more 
increases. Therefore, the SIRMs fuzzy reasoning is proposed to 
decrease the number of fuzzy control rules and to reduce the 
computation load of fuzzy reasoning. The SIRMs fuzzy control 
rules [5-6] are given as 
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where  and  are respectively the variables in the 
precondition and the conclusion parts, and  and is 
respectively the fuzzy sets whose membership functions are 
respectively denoted as and . Reducing the 
inference time to obtain the defuzzificated values of the 
variables in the conclusion parts, the product sum-gravity 
method [5-6] is proposed. Measuring the variable  as α  
in the precondition part of (8), the degree of fitness  is 
given by 
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and the variable in the conclusion part is inferred as 

( ijijij B ω=β −1 )
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Then, the defuzzificated value  of  in the conclusion 
part becomes 
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and the fuzzy control  becomes 

∑
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n
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where  is the control gain. ig
3.3  Disturbance observer 

The disturbance observer is cons ucted to estimate the 
excitation from the road profile by assuming that 
( , , , ) can be directly measured. The minimum-order 
observer is introduced as the disturbance observer [9]. 
Approximating the nonlinear restoring force  as 

the linear restoring force 211k , and defining the 
augmented state vector  and the measurement vector 
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                          then the state equation is obtained as 

BAxx =&                       (13) 

where the matrices characterizing (13) are respectively defined 
as 

 

The minimum-order observer [9] as the disturbance 
observer is derived to obtain the estimate  of  as 
follows. Dividing equation (13) into two equations, then  

ŵ
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Transforming  into  as *

w −= Ty*                        (16) 
 
where 

[ 1 TTT=T ,
 

 
then the estimate  of  is derived from the following 
equation 

*ŵ
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where 

12TAˆ −=A , ,  ˆ AJ −= TB−=B̂
 

Therefore, the estimate  of  is obtained from 
 

= ww ˆˆ Ty                      (18) 
 

and the estimate  is denoted as the variable in the 
precondition part. 

ŵ

4. EXPERIMENTAL RESULT 

The parameters characterizing  are determined from 
the Bode diagram of . It is seen from Fig. 2 
that the frequency response function with compensation more 

G π2
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where  raises the gain and more leads the phase shift than it without 
compensation where the parameters characterizing the 
compensator  are determined as )( fjGc π2
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The three kinds of suspension systems are presented to
compare the performance: 

  
Method A : Passive suspension system 
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Method B : Active suspension system without disturbance 
observer 

Method C: Active suspension system with disturbance  
observer 

 

-1 0 10

0 .2

0 .4

0 .6

0 .8

1

P re c o n d it io n  p a r t

PN

 
 

-1 0 10

0.2

0 .4

0 .6

0 .8

1
N P

C onc lusion  part  
Fig.2  Frequency response functions  

  
The parameters characterizing the experimental apparatus 

of the car model are given as 
     Fig.3  Membership functions  

 
Table 1 shows that the root mean squares (RMS) values of 

the time responses of the one-wheel car model obtained from 
three kinds of methods. It is seen from the table that Method C 
generally is better in the vibration suppression of the car model, 
specially in the accelerations of the car body and the wheel, 
than Methods A and B. The spectral density calculated from the 
time response of the acceleration of the car body is shown in 
Fig.4. It is seen from the figure that Method C more reduces the 
peak of the spectral density comparing with Methods A and B. 
The estimation of  obtained from the proposed disturbance 
observer is shown in Fig.5, and it indicates that the proposed 
disturbance observer is very effective as the exact and its 
estimated values of the excitation from the road profile have 
good agreement.  
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where  is determined by performing the free vibration 
experiment of the car model. The excitation force generated by 
the electric vibrator is assumed random with bandwidth 
and the active control  is generated at the sampling instant 
with the time interval 10ms.  

Hz5

The variables ( , , , , , , ) are 
assumed in the precondition part and are respectively 
normalized as 
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In this paper, a pneumatic active suspension system for a 
one-wheel car model was constructed by using fuzzy reasoning. 
The fuzzy control was obtained by single input rule modules 
fuzzy reasoning where excitation from a road profile was 
estimated by using as a disturbance observer. The active control 
force was constructed by actuating a pneumatic actuator, and 
the degradation of the performance due to the delay of the 
pneumatic actuator was improved by inserting a compensator 
following the accelerometer to measure the acceleration of the 
car body. The experimental results indicated that the proposed 
active suspension system much improved the performance in 
the vibration suppression of the car model. 

where xmax1c  are the scaling factors. The fuzzy sets 
are respectively assumed as P and N, and their membership 
functions are given as Fig. 3.   

The performance index to determine the parameters 
characterizing the active control is assumed to be  
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Fig.5 Estimation of the excitation from the road profile 
 
 
 

Table 1  RMS values of the time responses 
 

 Method A Method B Method C Unit 

)( 1
1 10−×z&&  9.32 5.33 4.94 2sm /  

)( 2
1 10−×z&  3.97 2.03 2.04 sm /   

1z )( 310−×  2.34 1.48 1.50 m  

)( 1
2 10−×z&&  9.95 9.84 8.45 2sm /   

)( 2
2 10−×z&  2.14 2.20 2.14 sm /   

2z )( 310−×  1.31 1.21 1.20 m   

)( 3
21 10−×− zz  1.63 1.42 1.45 m  

)( 4
2 10−×− wz  5.32 2.72 2.73 m  

u  0 23.8 24.1 N  

J  8.68 2.84 2.40 - 
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