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Abstract: In this paper, we at first describe the linear age-dependent population system. In addition, we introduce the

nonlinear population system. Using these age-dependent population systems, we evaluate the stability of these age-dependent
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1. Introduction
At the present day, many countries are concerned about pop-

ulation problems. The world’s total population is growing

rapidly and many advanced nations are concerned about

their aging society. Under these circumstances, there are

strong needs for quantitative analysis from various aspects

toward both each country and the whole world. In particu-

lar, Japan nowadays is entering a member of aging countries

with falling birth rates and there is a strong need for a ma-

jor turnaround of age distributions. The population control

problem was first investigated thoroughly by [1]. In this pa-

per, we at first describe the linear age-dependent population

system. In addition, we introduce the nonlinear population

system. Using these age-dependent population systems, our

objectives in this paper are to evaluate the stability of these

age-dependent population systems and determine the opti-

mal birth rates that realize a target distribution which re-

laxes an aging population. We focus on Japan’s population

and we use the amount of demographic statistics of Japan in

year 2000.

2. Description of the age-dependent population
system

2.1. The linear population system

2.1.1 The continuous population system

We consider the linear age-dependent population system ([1]

38-44) described by the equation

∂p(a, t)

∂a
+

∂p(a, t)

∂t
= −µ(a)p(a, t), (1)

p(a, 0) = p0(a), (2)

p(0, t) = ψ(t) = β(t)

∫ a2

a1

k(a)h(a)p(a, t)da, (3)

where a and t denote age and time, p(a, t) denotes the age-

dependent population density function, p0(a) the initial den-

sity function, µ(a) the moratlity rate, and ψ(t) the total

number of babies born at time t in unit time(called the birth

rate function). β(t) is the average birth rate describing the

average number of childbirths per female in lifetime, k(a) is

the female proportion function and h(a) is the female fertil-

ity pattern. a1 and a2 are the minimum and maximum of

fertility age of woman. Equation (1) is the continuous mod-

elu of the population evolution process written as a form of

partial differential equation. Equation (2) and (3) indicate

initial condition and boundary condition respectively.

2.1.2 The discrete population system

At first we note x(t) as the population state vector, and each

component xi(t) is referred to as the cohort age group of the

population.

x(t) =

⎡⎢⎢⎢⎣
x1(t)

x2(t)
...

xm(t)

⎤⎥⎥⎥⎦ . (4)

The discrete population system ([1] 45-49) can be written in

the vector form

x(t + 1) = H(t)x(t) + β(t)B(t)x(t), (5)

x(t0) = x0, (6)

where the matrix H(t) is referred to as the population state

matrix of year from t to t + 1, B(t) as the birth matrix.

Equation (6) is the initial condition. H(t) and B(t) can be

written as below.

H(t)=

⎡⎢⎢⎢⎢⎢⎢⎣

0 · · · · · · · · · 0

1 − µ1(t) 0

0 1 − µ2(t) 0
...

...
. . .

0 · · · · · · 1 − µm−1(t) 0

⎤⎥⎥⎥⎥⎥⎥⎦ (7)

B(t) =

⎡⎢⎣ 0 · · · ba1(t) · · · ba2(t) · · · 0
...

...

0 · · · · · · · · · 0

⎤⎥⎦ . (8)

Here, bi(t) satisfies bi(t) = (1 − µ(0))k(i)h(i).
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2.2. The Nonlinear population system

2.2.1 The continuous population system

We introduce the nonlinear age-dependent population sys-

tem whose mortality rates µ(a) depend on population den-

sity function p(a, t). The fact that the mortality depends on

population density is widely known in biology, so we assume

mortality rates to be µ(a) + δ · p(a, t). Then the nonlinear

population system can be written as

∂p(a, t)

∂a
+

∂p(a, t)

∂t
=−{µ(a) + δ · p(a, t)}p(a, t), (9)

p(a, 0)=p0(a), (10)

p(0, t) = ψ(t)=β(t)

∫ a2

a1

k(a)h(a)p(a, t)da, (11)

where δ(const.) denotes a constant parameter which de-

scribes the amount of influence that the nonlinear term at-

tributes to the system. The definition of other parameters

in this system are identical to those of the linear population

system shown in section 2.1.1.

2.2.2 The discrete population system

As well as the linear system, we have to discretize the con-

tinuous population system which is described as equation

(9)− (11). To compare the linear system with the nonlinear

system, we adopt the same method of discretizing as we did

in section 2.1.2. So the discrete population system can be

described as

x(t + 1) = H(t)x(t) + β(t)B(t)x(t), (12)

x(t0) = x0, (13)

where

x(t) =

⎡⎢⎢⎢⎣
x1(t)

x2(t)
...

xm(t)

⎤⎥⎥⎥⎦ , (14)

H(t) =⎡⎢⎢⎢⎢⎢⎣
0 · · · · · · 0

1 − µ1(t) + δ · x1(t)

0
. . . 0

.

.

.

.

.

.

0 · · · 1 − µm−1(t) + δ · xm−1(t) 0

⎤⎥⎥⎥⎥⎥⎦ ,

(15)

B(t) =

⎡⎢⎣ 0 · · · ba1(t) · · · ba2(t) · · · 0
...

...

0 · · · · · · · · · 0

⎤⎥⎦ . (16)

Here, bi(t) satisfies bi(t) = (1 − µ(0) + δ · x0(t))k(i)h(i).

3. Stability of the age-dependent population
system

3.1. Vector locus of loop transfer function

The objective in this section is to evaluate the stability of

the age-dependent population system (equation (1)-(3)), ap-

plying the method which is shown in [2]. We attempt to

figure the vector locus of loop transfer function of the age-

dependent population system. Additionally, we calculate

the stability radius r(A : D; E) which denotes the stability

bound of population system. We make the system descrip-

tion as follows. We introduce the state space X which is a

complex ordered Hilbert space L2
µ(0,∞) (�= {0}) with the

inner product

〈p, q〉µ :=

∫ ∞

0

e
2
∫ a

0
µ(ξ)dξ

p(a)q(a)da, p, q ∈ X. (17)

The output space Y and the control space U are also chosen

to be appropriate complex ordered Hilbert space ( �= {0}).
Let us define the linear operator A : D(A) ⊂ X → X by

Av : = −∂v − µ(a)v, (18)

D(A) : = {v ∈ L2
µ(0,∞)|Av ∈ L2

µ(0,∞), v(0) = 0}. (19)

∂v is the generalized derivative and also v is absolutely con-

tinuous.

< Proposition1 > The population system (1)-(3) can be

formulated as the followings. Let the control space be

U = C, the output space Y = C and the state space

X = L2
µ(0,∞). Then, the system equation can be written

by([2])

d

dt
p(t) = Ap(t) + Du(t), t > 0, p(0) = p0, (20)

y(t) = E|D(A)p(t) = 〈c(·), p(t)〉0, (21)

u(t) = ∆E|D(A)p(t), (22)

where

E|D(A) ∈ L(X, Y ) : E|D(A)p = 〈c(·), p(t)〉0,
c(a) = k(a)h(a)µ(a) − ∂{k(a)h(a)},

D ∈ L(U, X) : Dr = rb(·), r ∈ C,

b(a) = e
−
∫ a

0
µ(ξ)dξ

,

∆ ∈ L(Y, U) : ∆r = βr, r ∈ C, β ∈ R.

Equation (20), (21), (22) denote state equation, output equa-

tion, control law respectively. The system transfer function

G(λ) is defined by

G(λ)(·) := E|D(A)R(λ, A)D(·) = 〈c, (λI −A)−1D(·)〉0, (23)

and its norm is

||G(λ)||L(C) = |〈c(·), (λI − A)−1b(·)〉0|. (24)

This is summarized in Fig.1. So, the system transfer function

G(λ) can be written as below.

G(λ) = 〈c(·), (λI − A)−1D(·)〉0 (25)

=

∫ am

0

c(a)e
−λa−

∫ a

0
µ(ξ)dξ 1

λ

[
eλa − 1

]
da (26)

c(a) = k(a)h(a)µ(a) − {k(a)h(a)}′. (27)

As we take λ = σ + jω (σ = 0), G(λ) becomes

G(jω)=

∫ am

0

c(a)
1

jω

(
ejωa − 1

)
e

−jωa−
∫ a

0
µ(ξ)dξ

da

=

∫ am

0

{
c(a)

1

ω
sin ωa + jc(a)

(−1

ω

)
(1 − cos ωa)

}
× e

−
∫ a

0
µ(ξ)dξ

da, (28)
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Fig. 1. Block diagram of the system

and ReG(jω), ImG(jω) become as below.

ReG(jω)=

∫ am

0

c(a)
1

ω
sin ωae

−
∫ a

0
µ(ξ)dξ

da

ImG(jω)=

∫ am

0

c(a)
(−1

ω

)
(1 − cos ωa)e

−
∫ a

0
µ(ξ)dξ

da.

(29)

Plotting this G(jω) from ω = 0 to ω = ∞, we can figure the

vector locus of loop transfer function. We used the demo-

graphic data(2000) edited by National Institute of Popula-

tion and Social Security Research(Japan). This is shown in

Fig.2.

Fig. 2. Vector locus of loop transfer function ∆G(λ) for ∆ :

0 ≤ ||∆|| < r(A : D, E), depending on the demographic data

h(a),k(a),µ(a) of Japan-2000.

< Proposition2 >

Let A be Hurwitz stable. If lim|λ|→∞,Reλ≥0 ||G(λ)||L(C) ex-

ists in [0,∞), then

r(A : D, E) = {sup
ω∈R

||G(iω)||}−1 (30)

holds([2]). The population system (20)-(22) is Hurwitz sta-

ble for the original state at ∆ = 0 (β = 0). Under

the perturbation ∆ (0 ≤ β ≤ βmax), the norm of trans-

fer function G(λ) attains the maximum at λ = i0 with

||G(i0)||L(C) = |〈c(·), (−A)−1b(·)〉0|. So, if it is assumed that

||∆||||G(iω)|| ≤ |β|||G(0)|| < 1, then we have 0 ≤ |β| < r(A :

D, E). Therefore, applying small gain theorem, we can say

that the input-output stability is sustained if and only if

||∆|| < r(A : D, E).

3.2. The stability of the nonlinear poulation system

As well as the linear population system, we attempt to eval-

uate the stability of nonlinear population system. Since we

cannot define a transfer function toward the nonlinear pop-

ulation system, we are not able to evaluate the system’s sta-

bility in this form. Therefore, we have to linearize this non-

linear population system. The first equation of nonlinear

population system (equation (9)) is as below.

∂p(a, t)

∂a
+

∂p(a, t)

∂t
= −{µ(a) + δ · p(a, t)}p(a, t). (31)

Consider the age-dependent population density function

p(a, t) + ∆p which is ∆p apart from the criterion of the age-

dependent population density function p(a, t). Substituting

p(a, t) + ∆p for p(a, t) in the equation above, we can obtain

∂p(a, t) + ∆p

∂a
+

∂p(a, t) + ∆p

∂t
=

− {µ(a) + δ · (p(a, t) + ∆p)}(p(a, t) + ∆p)

(32)

Modifying this equation becomes,

∂p(a, t)

∂a
+

∂p(a, t)

∂t
+

∂∆p

∂a
+

∂∆p

∂t
=

− {µ(a) + δ · p(a, t)}p(a, t)

− {µ(a) + 2δ · p(a, t)}∆p − δ · ∆p∆p. (33)

If we take ∆p 	 p(a, t), then we can disregard δ · ∆p∆p.

Considering equation (1), we can obtain

∂∆p

∂a
+

∂∆p

∂t
= −{µ(a) + 2δ · p(a, t)}∆p. (34)
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Therefore, taking the criterion of a certain time t = t, we

can obtain the linearized poulation system as below.

∂∆p

∂a
+

∂∆p

∂t
= −{µ(a) + 2δ · p(a, t)}∆p. (35)

Applying the mortal rate µ(a) + 2δ · p(a, t) to equation (29),

we can obtain

ReG(jω)=

∫ am

0

c(a)
1

ω
sin ωae

−
∫ a

0
µ(ξ)+2δ·p(a,t)dξ

da,

ImG(jω)=

∫ am

0

c(a)
(−1

ω

)
(1 − cos ωa)e

−
∫ a

0
µ(ξ)+2δ·p(a,t)dξ

da.

(36)

4. Optimal control of age-dependent population
system

4.1. Introduction of the performance index

In the optimal control, we at first introduce the performance

index which is the criterion of optimal control. Although

there are many choices in selection of the performance in-

dex, we introduce the one which describes the difference

of both the actual distribution and the target distribution.

We attempt to control the age-dependent population system

(equation (1)) within the time interval [0, T ]. So the perfor-

mance index can be described as

J(β, T ) =

∫ T

0

{
∫ am

0

[p(a, t) − p∗(a)]
2
da}dt. (37)

The corresponding discrete form with the state vector x(t)

in the system of equation (5) is

J(β, T ) =

T −1∑
t=0

am∑
i=1

[xi(t) − x∗
i ]

2

= J =

T −1∑
t=t0

[x(t) − x∗]
τ

[x(t) − x∗] , (38)

where am denotes the maximum age and τ indicates trans-

position of the vector, x∗ the ideal population state(target

state). Given the ideal population state x∗, the problem of

optimal control for the population system(equation (5)) is

to find the optimal birth rate β∗(t). In this case, we define

the optimal birth rate β∗(t) as the birth rate which mini-

mizes the performance index (37) or (38) with respect to the

admissible control ||∆|| < r(A : D, E). β∗(t) satisfies

J(β∗(t), T )=min
β(t)∈U

∫ T

0

{
∫ am

0

[p(a, t) − p∗(a)]
2
da}dt, (39)

J(β∗(t), T )=min
β(t)∈U

T −1∑
t=t0

[x(t) − x∗]
τ

[x(t) − x∗] . (40)

4.2. The method of calculating the optimal birth

rate

This section is concerned with the method of calculating the

optimal birth rate β∗(t) which realizes the target population

state x∗. In this section, we use the discrete poulation system

described as

x(t + 1)=H(t)x(t) + β(t)B(t)x(t) = F (t,x(t), β(t)), (41)

x(t0)=x0.

And the performance index is written as

J =

T −1∑
t=t0

[x(t) − x∗]
τ

[x(t) − x∗] . (42)

x0 is the initial population state which is the demographic

data of Japan-2000. This is shown in Fig.3.
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Fig. 3. Initial population state x0

x∗ is the target population state and this is shown in Fig.4.

If the model such as Fig.4 will be realized, then we will be

able to maintain the distribution by choosing the appropriate

birth rate. This is the reason why we chose this model for the

target population state. In this model, the ratio of people

aged a(65 ≤ a) and people aged a(15 ≤ a < 65) is set to be

1 to 4. This is the actual ratio of Japan-2000, and we chose

this ratio for the target model.
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Fig. 4. Target population state x∗

In the following, we shall apply the method of constrained

gradient for calculation of the optimal birth rate. For this

end, we need to calculate the gradient of the functional of

the performance index. Define the Hamilton function as

H(t,x(t), β(t), ψ(t + 1))=F0(t,x(t), β(t)),

+ψτ (t + 1)F (t,x(t), β(t)) (43)

F0(t,x(t), β(t))=[x(t) − x∗]
τ

[x(t) − x∗] , (44)

where ψ(t + 1) is the adjoint function determined by the

following equation

ψ(t) =
∂H(t,x(t), β(t), ψ(t + 1))

∂x
. (45)

Given an increment ∆β sufficiently small to β(t) (β + ∆β ∈
U), the corresponding increment ∆x(t) should be

∆x(t + 1) = F (t,x + ∆x, β + ∆β) − F (t,x, β),

∆x(t0) = 0. (46)
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In addition, the performance index can be written as

J=

T −1∑
t=t0

[x(t) − x∗]
τ

[x(t) − x∗)]

=

T −1∑
t=t0

[H(t,x(t), β(t), ψ(t + 1)) − ψτ (t + 1)F (t,x(t), β(t))] .

Hence the increment ∆J of J is

∆J = J(β + ∆β) − J(β)

=

T −1∑
t=t0

[H(t,x + ∆x, β + ∆β, ψ) − H(t,x, β, ψ)]

−
T −1∑
t=t0

ψτ (t + 1)∆x(t + 1).

Within the interior of the domain of control, it can be un-

folded into a Taylor series

∆J =

T −1∑
t=t0

{
[

∂H(t,x(t), β(t), ψ(t + 1))

∂x

]τ

∆x +
∂H

∂β
∆β

+ . . . −
T −1∑
t=t0

ψτ (t + 1)∆x(t + 1)}. (47)

Since ∆x(t0) = 0, we also have

−
T −1∑
t=t0

ψτ (t + 1)∆x(t + 1)

= −
T∑

t=t0+1

ψτ (t)∆x(t)

= −
T −1∑
t=t0

ψτ (t)∆x(t) − ψτ (T )∆x(T ).

Substituting the above expression into equation (47), we

have

∆J =

T −1∑
t=t0

[
∂H

∂x
− ψ(t)

]τ

∆x(t)+
∂H

∂β
∆β−ψτ (T )∆x(T )−· · ·

(48)

If we let

ψ(t) =
∂H

∂x
=

∂F0

∂x
+
[
∂F

∂x

]τ

ψ(t + 1),

ψ(T ) = 0, (49)

we then obtain

∆J =

T −1∑
t=t0

∂H

∂β
∆β + · · · (50)

If we take the first term of ∆J in its expansion, and define

the gradient of ∆J as

∆Jβ =
∂H(t,x(t), β(t), ψ(t + 1))

∂β
, (51)

then

∆Jβ =
∂F0

∂β
+

[
∂F

∂β

]τ

ψ(t + 1) . (52)

Now we introduce the constraining operator defined below

β(t) =

⎧⎨⎩
β0, (β(t) ≤ β0)

β(t), (β0 < β(t) < β1)

β1, (β(t) ≥ β1)

(53)

In this paper, we used Penalty functions for the constraining

operator as in [3] . We then obtain an iterative equation with

constraints by the algorithm of steepest descent method.

β(k+1)(t) = β(k)(t) − ε{∆J
(k)
β + c(β(k))}. (54)

ε is a positive constant and c(β(k)) denotes the Penalty func-

tion. In this equation, by taking k large enough, β(k) con-

verges to β∗(t).

5. Reslults
We could figure the vector locus of loop transfer function of

both linear and linearized population system, plotting from

ω = 0 to ω = ∞. This figure is shown in Fig.5. As for

the nonlinear population system, we made computation for

various values of δ. From these figures, we could say that

all of these systems were stable when the birth rate β(t) was

appropriately chosen. We could also say that these systems

were also stable for each δ.
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Fig. 5. Comparison of the vector locus transfer function

Additionally, we could obtain the values of stability radius

r(A : D; E) corresponding to each δ. This is shown in Table

1.

Table 1. The values of r(A : D; E) corresponding to each δ

δ 0 1.0 × 10−9 3.0 × 10−9

||G(i0)|| 0.48 0.438 0.355

r(A : D; E) 2.052 2.282 2.819

δ 5.0 × 10−9 7.0 × 10−9 1.0 × 10−8

||G(i0)|| 0.287 0.233 0.171

r(A : D; E) 3.479 4.289 5.860

Secondly, we computed and figured the optimal birth rates

β∗(t) corresponding to each δ. In the process of population

control, we computed β∗(t) in the case of T = 50 and T =

100, where T denotes the interval of control action. These

results are shown in Fig.6 and Fig.7.
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Fig. 6. The optimal birth rate β∗(t) (T = 50)
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Fig. 7. The optimal birth rate β∗(t) (T = 100)

In addition, we figured the population state at the year t = T

which was the result of calculation, depending on the calcu-

lated β∗(t). From the obtained figures, we couldn’t realize

the target distribution when calculated in the case of T = 50,

especially when we took δ small enough. On the other hand,

we could obtain the figures which were close to the target

distributions, when calculated in the case of T = 100. These

figures are shown in Fig.8 and Fig.9. It is natural that such

results were obtained, because the time constant τ of this

age-dependent population system is very large. The time

constant τ equals to the life expectancy of the age-dependent

population system. This fact was proved in [1].

6. Conclusions

In this study, we could obtain the stability radius r(A : D; E)

of both linear and linearized population system by figuring

the vector locus of loop transfer function. From these results,

we could conclude that the higher values we took for δ, the

higher the stability radius r(A : D; E) became. On the other

hand, the smaller values we took for δ, the smaller the sta-

bility radius r(A : D; E) became. From this result, we can

conclude that the higher we took the values of δ, the stronger

the stability of the population system became. Secondly, we

could determine the optimal birth rates β∗(t) that realized

a target distribution when we took the interval of control

action T higher than the time constant τ which is actually

the life expectancy. But in case of taking the interval of con-

trol action T smaller than the time constant τ , we could not

realize a target distribution. For further studying, we might

have to use the population system taking immigrants into

consideration.
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Fig. 8. The population state x(T ) (T = 50)
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Fig. 9. The population state x(T ) (T = 100)
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