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1. INTRODUCTION 

Almost all of studies of sliding mode control (SMC) have 

been proposed in the continuous-time domain. In the actual 

system, however, controller is implemented in the 

discrete-time domain since they use digital computer. 

Therefore, discrete time sliding mode control (DSMC) has 

been studied extensively to address the problems in particular 

associated with the SMC of discrete time systems with 

relatively low switching. Major research efforts in DSMC 

have been devoted to the development of various controllers 

using specific guiding principles [1]-[3]. However, the study 

of discretizing continuous SMC for discrete implementation 

has not been fully explored [4]. Recently the chaotic and 

discrete behaviors of the equivalent control based SMC is 

attracted by discretizing continuous time SMC for several 

class of SMC system [5].

In this paper, we study the discretization of the equivalent 

control based sliding-mode control (SMC) systems. We first 

investigate some inherent dynamical properties of the 

discretization effect on the continuous time SMC and  

periodic properties which is changed by the variation of  

system parameter during the steady state phase. From this 

result, the behavior and boundary for the system steady states 

using symbolic dynamics approach are explored.  

The investigation is mainly carried out via studying the 

second order linear systems and some interesting 

characteristics are explored.  

2. DISCRETIZATION OF AN EQUIVALENT 

CONTROL BASED SMC  

The controllable single-input linear Sliding Mode Control 

(SMC) and switching manifold is then described by   

( ) ( ) ( )x t Ax t bu t                              (1)                                    

( )Tg c x t                                      (2)                                  

where  nx R  is the state vector, nu R  is the scalar input, 

and A  is an n n  matrix, b and c are n m  and 

m n matrics respectively. The switching surface g  is 

predefined to represent a desired asymptotically stable 

dynamics. From the above system, the equivalent control input 

based SMC can be obtained as  

eq su u u                                   (3)               

where 1( )T T

equ c b c Ax and 1( ) sgn ( )T

su c b g x  with 

0  being a constant control gain, sgn is the sign function, 

and Tc b is nonsingular. Note that the equivalent control equ

is derived by solving 0g  subject to (1).               

  Consider the concept of an equivalent discrete-time model 

motivated by eventual digital computer implementations of 

algorithm. Also our present interest in this study is how 

discretization affects the control performance of this class of 

SMC. Thus, we obtain discrete-time measurements from a 

continuous time system described by (1), with u  held 

constant over each sample period from sample time 

[ , ( 1) ]kh k h  , where h  is a sampling period. 

To study the discretization behaviors, we first convert the 

continuous-time system (1) under the ZOH into the discrete 

form. At the discrete time k , the solution can be written as   

0
( 1) ( )

h
Ah A

kx k e x k e bu                        (4)              

where 

( ) sgn ( ( )), 0,1, 2, .

k eq s

T

u u u

c Ax k g x k k

The Function forms a sequence of  binary values of 1

and 1 , which can be considered as a symbolic sequence of 

the dynamics. For simplicity, we denote sgn ( ( ))g x k  as ks ,

hence the symbolic sequence, denoted as s , can be 

represented by 0 1 2( , , )s s s s . If a symbolic sequence has a 

minimal period L , we name the sequence a 

period L sequence . The above discrete system can then be 

rewritten as  

( 1) ( ) kx k x k s                           (5)              

with 
0

h
Ah A Te e d bc A  and 

0

h
Ae d b .
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It is well known that discretizing SMC with moderate 

sampling rates causes chattering. The problem of interest is 

how the control performance deteriorates when the sampling 

period increase.  

3. DISCRETIZATION ANALYSIS: SECOND- 

ORDER SYSTEMS 

To study of the discretization behaviors of the equivalent 

control based sliding-mode control systems, we assume that 

the controllable second order system are in the form of   

1 2

0 1 0
,

1
A b

a a
, 1 1, 1 , 0

T
c c c  . 

For this system, 

1 1

1 1

1

cos sin sin

sin cos sin

Ah h h h h
e e

a h h h

with 2 / 2a , 2

1 2(1/ 2) 4a a . Therefore, it can be 

verified via some calculations that 
1

0 d
,

1

2

where 

1 1

2
0

( ) sin ( ) sin
h

hv h e h c a e d

1( ) (cos ( ) sin )hd h e h c h

1

1
0

( ) sin
h

h e d

1

2 ( ) sinh e h .

Using the above equations, the second-order discrete time 

dynamics are then described by  

1 1 1( 1) ( ) ( ) kx k x k z k s                     (6)                                         

2( 1) ( ) kz k dz k s                         (7)                                                

where 2( ) ( )z k x k  is a scalar variable.   

Theorem 1:  The system (6) and (7) is stable in the sense 

of Lyapunov if [5] : 

1 1d .                                    (8)                                               

Furthermore, the system state is bounded by  

1

1 2
1 1

( ) | |
| ( ) |

1 | |

c
x

d
, 2| |

| ( ) |
1 | |

z
d

.    (9)    

Proof: First, the boundary of z  will be verified below. 

Iterating z  by 1k  times from the initial state (0)z  leads 

to 1

2

0

( 1) (0)
k

k i

k i

i

z k d z d s . Therefore, we obtain 

1

2

0

1
1 2

| ( 1) | | | | (0) | | | |

| (1 | | )
| | | (0) |

(1 | |)

k
k i

i

k
k

z k d z d

d
d z

d

         (10) 

It is easy to know that as k , z  becomes 

2| |
| ( ) |

1 | |
z

d
. Since z is eventually confined by (9), we 

now find the lower and upper bounds for 
1x . At the 

intersection point of the switching line and the equilibrium 

2| |
| ( ) |

1 | |
z

d
, we have 1 1 2

1 1 1

| |
( ) ( )

1 | |
x k c z k c

d
.

Therefore, from (6) we can get the boundary of 
1x  to be 

1

1 2
1

( ) | |

1 | |

c

d
.                              ■

Theorem 2: If the system (6) and (7) is stable and Period-L 

sequence can be exactly estimated, then the boundary of 

system state is given by 

1( / 2 1)

2 1
1 / 2

0

| | | | ( )
| ( ) |

1 | |

nL

L
n

d c
x

d
   , 

/ 2 1)

2

/ 2
0

| | | |
| ( ) |

1 | |

nL

L
n

d
z

d
.                   (11) 

Proof: First, it is clear that iterating z  by 1k  times 

from the initial state (0)z  leads to  

2

1 2

2 0 2 1

( 1) ( )

(0)

k

k k k

z k dz k s

d z d s d s
        (12) 

where if k and | | 1d  then (0)kd z is neglected. Eq. 

(12) can be rewritten as 

2 3

2 1 2 3 4( 1) ( )k k k kz k s ds d s d s      (13) 

where, if the symbolic sequence is period-2, i.e., 

( 1, 1)s  then the state trajectory will periodically 

converge to the two fixed points. Therefore, in order to divide 

the right -hand side of (13) into each periodic set, we can 

group by two terms. 

2 2

2 3 2

3 4

4 5 4

5 6

1 )

(1 )

1 )

k k

k k

k k

s ds d

d s d s d d

d s d s d d
                     (14) 

Substituting (14) into (13) yields 

2 4

2( 1) ( 1 ) (1 ) (1 ) )z k d d d d d    (15) 

where, as k , we obtain 2

2

(1 )

1

d
z

d
. Therefore 

we can express the state boundary of z  as 
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2| |
| ( ) |

1 | |
z

d
.                              (16) 

And next, if the symbolic sequence is period-4, i.e., 

( 1, 1, 1)s  then the trajectory will periodically 

converge to the four fixed points. we can also bind the right 

-hand side of (13) by forth terms.  

2 3 2 2

1 1 2 3

4 5 6 7 4 2 5 2

4 5 6 7

1 ) 1 )

1 ) (1 )

k k k k

k k k k

s ds d s d s d d d

d s d s d s d s d d d d (17)

Substituting (17) into (13) yields 

2 2 4 2

2( 1) ( 1 ) (1 ) (1 ) )z k d d d d d  (18) 

where, as k , we obtain 

2 2

2 2

4 4

(1 ) (1 )

1 1

d d d
z

d d
.                (19) 

Therefore, we can also obtain the boundary of z

1
2

2
0

| | | |
| ( ) |

1 | |

nn

n

d
z

d
.                       (20) 

Consequently, from (16) and (20), it can be made more 

general form, which can be expressed as  

( / 2 1)

2

/ 2
0

| | | |
| ( ) |

1 | |

nL

L
n

d
z

d

Similarly, the boundary of 
1x  can be derived as.  

1/ 2 1)

2 1

/ 2
0

| | | | ( )
| ( ) |

1 | |

nL

L
n

d c
x

d
 .         ■

Corollary 1: By (9) and (11), it is easily known that the 

relation between two equations can be defined as 

1/ 2 1)

2 1

/ 2
0

1

1 2
1

| | | | ( )
| ( ) |

1 | |

( ) | |
,

1 | |

nL

L
n

d c
x

d

c

d

/ 2 1)

2

/ 2
0

| | | | |
| ( ) |

1 | | 1 | |

nL

L
n

d
z

d d
.             (21)  

Proof : In (11), as L , / 2| | 0Ld , then  

/ 2 1)

2

/ 2
0

2

2 2 2

/ 2

2 2

| | | |
| ( ) |

1 | |

| | | | | | | | | |

1 | |

| | | |
.

1 | | 1 | |

nL

L
n

L

d
z

d

d d

d

d d

     (22) 

From above results it can be seen that there is less the 

boundary of (11) by Theorem 2 than the boundary of (9) by 

Theorem 1. Although (11) is shown as excellent results, it is 

necessary to estimate the exact period-L. For this reason, the 

estimation methods of period-L will be introduced in the next 

Theorem.  

 Corollary 2: For the system (6) and (7) with the period-2, the 

lower and upper bound of z are 2| |

1 | |
lz

d
, 2| |

1 | |
uz

d

respectively. The state trajectory will periodically converges 

to the two fixed points ( , )i uz z  during the steady state phase. 

Proof : Note that for any fixed ks ( ks is either 1  or 1 )

for 0, , ,k , form (7), we have, as k ,

2

(1 )
l kz s

d
. For this reason the upper and lower 

boundary ( , )i uz z  can be defined as ( 2| |

1 | |d
, 2| |

1 | |d
).

Finally, from this discussion it can be found that uz is equal to 

the lz .                                         ■

Theorem 3 : In (6) and (7), if 2 0 then the system has the 

period-2 for symbolic sequence. On the other hand, if 

2 0 then the system has period-L more than 4L .

Proof : As above mentioned, when the symbolic sequence is 

period-2, using ( , )i uz z  which has been defined in Corollary 

2,  we can rewritten (7) as  

2( 1) ( ) ( )l u kz k z k dz k s                    (23) 

then, since u lz z

2( ) ( )u u kz k dz k s                           (24) 

Thus, (24) becomes as  

2

1
uz

d
                                    (25) 

As can be seen in (25), because uz is a positive value, 2

must have a positive value by the proof of Corollary 2. But if 

2 0 , then (24) cannot be satisfied. This means that the sign 

of 2  to be period-2 must be positive. And it should be noted 

that period-L has actually has more than 4L  for 2 0 .

Consequently the system parameter ,d for various 

sampling time h  is shown as Fig. 1. In Fig 1, the system has 

period-2 for the sampling time to be 2 0 .            ■

4. SIMULATION STUDIES 

In this section, we present some simulation studies to verify 

the theoretical results in the previous sections.  

We first set 
1 2 1 2

5, 2, 1a a c c  for simulation 

condition. This setting corresponds to a stable continuous time  
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system. The sampling time and the initial condition 

are 0.3h , (0) (2.0, )x . First, the theoretical values of 

the boundaries given by Theorem 1 are 1| ( ) | 0.359x   and

| ( ) | 0.588z .  Since 2 0.381 0 , we can see from Fig. 

2 that it has the period-2. Therefore, proposed boundaries by 

Theorem 2 is 1| ( ) | 0.319x   and  | ( ) | 0.282z . Also 

the boundary of z  becomes ( 0.282, 0.282)  during the 

steady state phase. We can easily verify that the two fixed 

points are within the boundaries given in Theorem 2 and 

eventually the trajectory converges to these points.        

To look at another interesting phenomenon, we 

set 
1 2 1 2

100, 0, 1a a c c  for simulation condition.  

Let 0.35h  and (0) (0.5, 0.5)x . And then phase portrait 

of system state is Fig. 3. First, the theoretical values of the 

boundaries given by Theorem 1 are 1| ( ) | 0.394x   and 

| ( ) | 0.356z .  Since 
2

0.035 0 , we can see from 

Fig. 3 that it has the period-4. Therefore proposed boundaries 

by Theorem 2 is 
1

| ( ) | 0.078x   and  | ( ) | 0.037z ,

which are demonstrated in the simulation. We can also verify 

that the four fixed points are within the boundaries given in 

Theorem 2 and eventually the trajectory converges to these 

points.        

Fig. 1. System Parameter ( ), ( )d h h

Dashed line: ( )d h , Solid line: 2 ( )h

Fig. 2. Phase portrait of 0.30h

Fig. 3.  Phase portrait of 0.35h

5. CONCLUSION  

In this paper, the dynamical properties of the discretized 

second-order systems has been presented. Especially, 

according to the variation of a sign of the system parameter 

2 , the estimation of period-L for symbolic sequence has been 

performed. From this result, for the case of 2 0 , the 

behavior and boundary for the system states have been fully 

understood. The studies of these property will help prevent 

ill-behaviors due to discretization in digital controllers design. 

Finally, further research will be devoted to investigate the 

estimation of period-L with 2 0
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