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Abstract: This paper is concerned with a design method of two-degree-of-freedom controller by Coefficient Diagram Method 

(CDM). The two-degree-of-freedom control system satisfies both of tracking and disturbance rejection performances, but requires

tuning of many parameters. By the proposed design method, these parameters can be obtained properly without any adjustment. 

Furthermore,  the tracking and disturbance rejection performances can be simultaneously designed. The effectiveness of the proposed

method is demonstrated by the simulation. 
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1. INTRODUCTION 

The number of closed-loop transfer function that can be

adjusted independently is called the degree of freedom of a 

control system [1]. It is known that the conventional one-

degree-of-freedom (abbreviated as 1DOF) controller such as 

Proportional-Integral (PI) and Proportional-Integral-Derivative 

(PID) controllers have been widely used in various industrial

applications. These controllers with well-tuned parameters can 

give a good system performance such as fast rise time, small 

overshoot and short settling time [2]. For conventional 1DOF

control systems, the parameters of the controllers are usually

tuned so that tracking performances are satisfactory. However,

this tuning may frequently lead to poor disturbance rejection. 

This is a drawback of 1DOF control system. In order to design 

the control system to meet both tracking and regulation 

performances which are the most important requirements for 

every control systems [3], a two-degree-of-freedom 

(abbreviated as 2DOF) control system must be adopted. 

However, it is quite complicated to design and tune the 

controller parameters. 

       Hence, this paper proposes the application of Coefficient 

Diagram Method [4] to design 2DOF control system. This 

method is an efficient tool to design the parameters of 2DOF 

controller based on the stability and the speed of the controlled

system so that the desired performance criteria can be met.

Stability is designed from the stability index , and speed is

designed from either the equivalent time constant  or the 

tuning factor . In this work, the transfer function of the

2DOF control system in term of stability index , equivalent 

time constant  and tuning factor  has been developed in 

general form. The coefficients of the numerator and

denominator of the transfer function are related to the 2DOF

controller parameters algebraically in an explicit form.

Consequently, the 2DOF controller parameters can be

obtained appropriately from the values of stability index ,

equivalent time constant and tuning factor . It is known 

that the effect of disturbance can be reduced by assigning the

appropriate location of the closed-loop poles and the tracking

response can be further optimized by adding the zeros to the 

system via feedforward compensator. By CDM concept, the 

good disturbance response can be achieved by selecting the 

appropriate values of  the equivalent time constant  and the 

stability index , while the speed of the response is directly

effected by the tuning factor . Hence, the effects of 

variation in the stability index , the equivalent time constant 

 and the tuning factor  are investigated. The proposed

control design methodology is tested on a numerical example

via simulation.
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2. OVERVIEW OF 2DOF CONTROL SYSTEM 
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Fig. 1 Structure of 2DOF control system.
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    The proposed structure of 2DOF control system shown in 

Fig. 1 consists of a plant , an integral compensator)s

s , a feedforward compensator

and a feedback compensator . The 

transfer function from  to C s  and the transfer function 

from  to C s   are respectively given as
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It is seen from Eq. (2) that the disturbance response is

irrelevant to the feedforward compensator. The tuning may be

done without the parameters of feedforward compensator for
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disturbance rejection first, and then they are selected to obtain 

the satisfactory tracking capability. The 2DOF control system

can be designed to satisfy both the regulation and tracking 

performances via selection of poles and zeros, but requires 

tuning of the additional parameters of feedforward 

compensator. Practically, it may be too complex for users to 

design and tune all of parameters. 

3. COEFFICIENT DIAGRAM METHOD 

The CDM is an algebraic control design approach. This 

method uses polynomials for system representation. The 

denominator and the numerator of the transfer function are

considered independently from each other. In this section, the 

CDM standard block diagram and the basic mathematical

relations concerning the CDM will be described.
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 Fig. 2 CDM standard block diagram of SISO system.

       The standard block diagram of the CDM design for a

single-input-single-output system is shown in Fig. 2. 

and  are the polynomials of the plant, ,  and 

 are the polynomials of the standard CDM controller.

 is the disturbance entering to the controlled system. The

transfer function of the plant in polynomial form can be

expressed as 
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and the controller in the polynomial forms are given by
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where  and . is a pre-filter and is set to be 

in order to obtain the step response with zero steady-state

error. Hence, the characteristic polynomial of the closed-loop 

system is
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where are the coefficients of the characteristic

polynomial. The stability index , the equivalent time 

constant  and stability limit  are defined as follows: 
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where . In general, the equivalent time constant 

 and the standard stability index  are chosen as:
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where  is the user specified settling time. In the actual 

design, the stability index ,  are strongly

recommended. However, for , the condition can be 

relaxed as 
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Sometimes the larger value of stability index  is selected in 

order to improve robustness related parameter change. The

standard stability index values stated in Eq. (10) can be used

to design the controller if the following condition is satisfied 

i
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where  and  are the coefficients of the plant at  and 

. If the above condition is not met,  is first 

increased then  and so on, until Eq. (12) is satisfied. From

Eq. (6) to Eq. (8), the coefficient  can be written by

kp

1)th

1kp

2n

thk

(k 1n

ia

0 2 2

1 2 2 1

1

...

i

i i i

i i

a a
1

.               (13)

Then the characteristic polynomial can be expressed in term of 
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    4. DESIGN OF 2DOF CONTROL SYSTEM

A designing method of the 2DOF control system by CDM

to meet desired performance criteria is discussed in this

section. The parameters of 2DOF controller are designed 

based on the stability and the speed of the controlled system.

Stability is designed from the standard stability index , and 

speed is designed from the equivalent time constant and the 

tuning factor . The stability index , the equivalent time 

constant , and the tuning factor  are defined based on the

closed-loop transfer function. These coefficients are related to 

the controller parameters algebraically in an explicit form.
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    In order to employ CDM to design the controller parameters 

properly, the controlled system consisting of the CDM 

standard block diagram of SISO system with the feedforward 

and feedback compensators is proposed (see Fig. 3). 

and  are the polynomials of the feedforward 

compensator and the feedback compensator respectively. After 

rearranging the plant and the feedback compensator shown in

Fig. 3,  and  which are the polynomials of the 

modified plant  can be obtained and is shown in Fig. 4. 
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Fig. 3 CDM standard block diagram of SISO system with the 

feedforward and feedback compensators.
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Fig. 4 Rearranged CDM standard block diagram.

From the block diagram of Fig. 4 it follows: 

*

* *

( )[ ( ) ( ) ( )]( )

( ) ( ) ( ) ( ) ( )

p a ff c

c p c p

B s B s B s A sC s

R s A s A s B s B s
              (15)

and

*

* *

( ) ( )( )

( ) ( ) ( ) ( ) ( )

c p

c p c p

A s B sC s

D s A s A s B s B s
.               (16)

    This transfer function is a general form for designing the

proposed 2DOF control system. Then, the parameters of 

2DOF controller can be designed by following procedures: 

It is seen from Eq. (15) and Eq. (16) that the feedforward 

compensator  has an influence on the transfer function

from  to  and can be used to increase the speed of

the transient response of the controlled system, while the 

transfer function from  to  is not affected. 
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where , and ’s and b ’s are constants. The 

denominator polynomial  is the characteristic polynomial

of the 2DOF control system, and its coefficients can be found 

from

m n a
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This equation is the same form of Eq. (14). 

       The CDM is mainly used to design the controller of the

closed-loop system. However, this method can be extended to 

design the coefficients of the numerator polynomial  as

well [5-6]. Thus, the relationship among the coefficients of the 

numerator polynomial  can be defined as 
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where  is the tuning factor. The equivalent time constant

is scaled by tuning factor so that the response speed can be 

adjusted. The value of tuning factor  is defined as 

. Substituting each coefficient b into the numerator

polynomial , yields
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Hence, the transfer function of 2DOF control system in term 

of ,  and  can be obtained byi
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1) Derive the transfer function (15) which contains the

unknown parameters of 2DOF controller. In this step, a

designer must select the number of the feedforward and the 

feedback parameters. Usually, the number of feedback 

parameters should equal to the order of the plant G s .( )p

    2) Define the settling time t  in order to find the equivalent 

time constant  from Eq. (9), and determine the proper values 

of stability index  and tuning factor . Then, substituting 

these parameters to the transfer function (21). Noting that the 

settling time  cannot be specified in case that the number of 

the feedback compensator parameters is less than the order of 

the plant .

s

i

st

)s(pG

    3) The 2DOF controller parameters are simultaneously

obtained by equating the transfer function (15) to the transfer

function (21). 

264



5. NUMERICAL EXAMPLES

The effectiveness of the proposed 2DOF control system will 

be evaluated in this section. A series of simulations are 

performed. The 2DOF controller parameters will be designed 

with various stability index values in order to study the 

tracking capability and disturbance rejection property. Then,

the responses to the step input with different values of the 

equivalent time constant are investigated. Finally, the effect 

of tuning factor will be regarded. In this study, the plant is 

assumed to be a fifth-order system and expressed as

i

5 4 3 2

800
( )

12 88 407 2000 400
pG s

s s s s s
.               (22)

Thus, the transfer function (15) is given by Eq. (23). Next, the 

transfer function of the 2DOF control system in term of ,

, and is derived. The transfer function of a fifth-order 

plant with 2DOF controller is then shown in Eq. (24). To 

obtain the desired system performance, the values of ,

and must be selected properly and substituting into the Eq. 

(24). Finally, equating the Eq. (23) to Eq. (24), the parameters

of 2DOF controller will be obtained. 

i

i

5.1 Responses with the variation of stability index

    The 2DOF controller parameters are designed with

parameter variations in , ,  and  to study the system

responses to the unit-step input and the step disturbance. The 

equivalent time constant  is set to be 1.0 second, for the

settling time t  seconds, and the tuning factor  is 

zero. The unit-step responses are shown in Fig. 5. The

responses that the unit-step disturbance is applied to the input 

terminal of the plant  are also shown in Fig. 6.
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Fig. 5 Unit-step responses with the variation of stability index; 
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Fig. 6 Disturbance responses with the variation of stability

index; (a) , (b) , (c)  and (d) .1 2 3 4

It is observed from Fig. 5 that the transient responses to a 

step input are effected by changing the values of  and ,

which are the most dominant factors dictating the shape of the

response than the rest. The overshoot of the transient response 

can be reduced by increasing the values of  and . Fig. 6 

shows the fact that the disturbance effect can be decreased

when the 2DOF controller is designed by larger value of 

stability index. In this case, the stability indices  and are

still the dominant factor. However, the rest of stability index 

also have effect on the disturbance rejection capability. To 

illustrate these results, the three systems for which the stability

indices given in Table 1 are considered. 
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Table 1 Higher stability index variation.

Systems 1 2 3 4 5

1 0 1.0 2.5 2.0 2.0 2.0 2.0

2 0 1.0 2.5 2.5 2.5 2.0 2.0

3 0 1.0 2.5 2.5 2.5 2.5 2.5
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Fig. 7 Unit-step responses. 
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Fig. 8 Disturbance responses. 

All of three systems have the same value of . The  and 

 of the system 1 are smaller than those of system 2 and 3.

The  and  are largest for system 3. The unit-step

responses and disturbance responses are respectively shown in 

Fig. 7 and Fig. 8. Fig. 7 shows that the unit-step responses of 

all three systems are almost same due to the same value of .

However, the system 3 shows the best disturbance rejection 

capability because increasing of  for greatly effects to 

the disturbance responses. Thus, the properties of the 

disturbance can be defined by CDM directly.
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4 5

1

i 3i
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5.2 Responses with the variation of equivalent time 

constant

    In this sub-section, 2DOF controller parameters are

redesigned with the variation of equivalent time constant .

The standard stability indices  are 

selected and the tuning factor  is zero. The unit step

responses are shown in Fig. 9.
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Fig. 9 Speeding up responses. 

The simulation results in Fig. 9 show that the speedy up 

response can be achieved by decreasing the value of the

equivalent time constant. Moreover, the settling time can be

defined by a designer as in Eq. (9), which corresponds to the

concept of CDM.

5.3 Effect of tuning factor 

    The responses from two previous sub-sections are satisfying

both transient response and disturbance rejection property

without considering the feedforward compensator ( ).

However, the transient response generally has long rise time, 

and also the equivalent time constant cannot be chosen freely

in case that the number of the feedback compensator

parameters is less than the order of the plant [5].

Therefore, the response speed cannot be specified by a 

designer.
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Fig. 10 Unit-step responses with the variation in tuning factor. 

It is known that the response speed can be further improved 

by adding zeros to the system via feedforward compensator.

Thus, the feedforward compensator is added to 2DOF control

system in order to improve the response speed by varying the 

values of tuning factor . Normally, a faster response can be

obtained from a larger value of tuning factor . However, the

fast response may lead to high overshoot. Hence, the effect of

tuning factor to response speed should be studied in order 

to find its satisfied value that gives a fast response without 

overshoot. As the tuning factor  directly affects the 

response speed but not the disturbance rejection capability,

only the responses to the step input with various tuning factor 

values are considered.

Fig. 10 shows that a faster response can be obtained from a 

larger value of tuning factor, but the response has high

overshoot. The satisfied value of tuning factor that gives a

fastest response without overshoot should be around 0.6. 

6. CONCLUSION 

    In this paper, the two-degree-of-freedom controller 

designed by CDM to satisfy the tracking and regulation 

performances simultaneously has been studied. The transfer

function of the proposed 2DOF control system has been

developed in general form by means of CDM concept. This

form can be applied not only to the low-order plant, but also to

a higher-order plant as well. As the result, the 2DOF controller 

parameters can be obtained easily and properly by assigning 

the values of stability index, equivalent time constant and

tuning factor. The explanations of the effects of CDM

parameters to the responses of 2DOF control system were also

done.
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