등급집진효율 곡선의 기울기가 2단 사이클론의 집진효율에 미치는 영향

허광수[†]·설승윤^{*}·김민하^{**}

The slope effect of grade efficiency curve in a two-stage cyclone

Heo Kwang Su, Seol Seoung-Yun and Kim Min Ha

Key Words: Cyclone(사이클론), Collection Efficiency(집진율), Grade Efficiency Curve (등급집진효율 곡선), Multi-cyclone(다단 싸이크론)

Abstract

A collection efficiency of cyclone is influenced by cut-size and slope of grade efficiency curve. It has been recognized that the collection efficiency is improved when the cut-size is reduced. However, effects of the slope have never been studied so far. In this study, we analyze a relationship between slope of grade efficiency and collection efficiency in two-stage cyclones. In single stage cyclones, higher slope cyclones have high efficiency. On the contrary to single stage cyclone, collection efficiency of two-stage cyclone have the maximum value when the first cyclone has a lower slope and second cyclone is high.

기호설명

- f확률분포, dimensionlessF누적분포, dimensionless
- g 등급집진효율, dimensionless
- m 등급집진효율의 기울기, dimensionless
- x₅₀ 입자 직경, μm
- n 집진효율, dimensionless

Subscript

- 1 1단 싸이클론
- 2 2단 싸이클론
- f 공급 분진, feed
- u 집진된 분진, under-flow
- o 배출된 분진, over-flow

↑ 전남대학교 기계시스템공학부 대학원
 E-mail : tornado3@hitel.net
 TEL : (062)530-0225 FAX : (062)530-1689
 * 전남대학교 기계시스템공학부 대학원
 ** 전남대학교 기계시스템공학부 대학원

1. 서 론

싸이클론은 산업계 전반에 걸쳐 널리 사용되는 집 진장치로서 집진효율을 향상시키기 위한 많은 연구가 진행되었다^[14]. 또한 최근 싸이클론을 이용하여 먼지 봉투 없는 청소기를 개발하려는 연구 또한 활발하게 진행되고 있다^[5-6]. 현재 상품화되고 있는 사이클론을 이용한 청소기를 보면 대형 1단 사이클론을 이용하여 조대 입자를 분리하고 미세입자는 필터를 이용하여 제 거한다. 먼지봉투와 필터의 막힘 현상으로 인한 흡입 력 저하를 방지하기 위해 하나의 1차 싸이클론과 다수 의 2차 싸이클론으로 이루어지는 2단 싸이클론 청소기 가 개발되고 있다^{7-8]}. 싸이클론의 성능을 향상시켜 필 터를 제거하고자 하는 기존의 연구는 사이클론의 컷-사이즈를 감소시키는 방향으로 진행되어 왔다. 그러나 싸이클론의 집진효율은 컷-사이즈뿐만 아니라 등급집 진효율의 기울기에 의해서도 영향을 받는다. 1단 싸이 클론의 경우 등급진진효율 곡선의 기울기가 급할수록 높은 효율을 보임이 알려져 있다¹⁹¹. 그러나 2단 싸이클 론의 경우, 1단의 성능에 의해 2단 싸이클론으로 유 입되는 분진의 분포가 변화하므로 1단 싸이클론과 다 른 거동을 보일 것으로 예측된다.

본 논문에서는 2단 싸이클론을 이용한 먼지봉투 없 는 청소기의 실용화를 위한 기초연구로서 각단 싸이클 론의 등급진집효율 곡선의 기울기의 변화가 2단 싸이 클론 전체의 집진효율에 미치는 영향에 대해 조사하였 다.

2. 사이클론 이론

2.1 등급집진효율

등급집진효율은 투입되는 입자의 분포와 무관한 사 이클론 고유의 성능을 나타내며, 식(1)으로 정의된다.

$$g(x) = \frac{M_{u}f_{u}(x)dx}{M_{f}f(x)dx}$$
(1)

위 식에서 하첨자 f는 공급(feed), u는 집진 (captured)을 의미하며 함수 f(x)는 입자 직경 x에 따른 분포함수(PDF, probability distribution function)를 의미한다. M은 분진의 질량이다. 위 식의 확률분포함수 f는 다음 식을 만족해야 한다.

$$\int_0^\infty f(x)dx = 1 \tag{2}$$

집진율과 등급집진효율(GEC, grade efficiency curve)의 관계는 다음과 같다.

$$g(x) = \eta \frac{f_u(x)}{f_f(x)} = 1 - (1 - \eta) \frac{f_o(x)}{f_f(x)} \quad (3)$$

집진율 n는 공급분진 질량에 대한 집진분진의 질량으로서 다음과 같다.

$$\eta = \frac{M_u}{M_f} = \int_0^\infty g(x) f_f(x) dx \qquad (4)$$

식(1) 또는 (3)을 용하여 등급집진효율을 구하고자 하는 경우에는 실험을 수행하여야 한다. 등급집진효율 에 대한 여러 가지 실험식이 존재하며, 그 중 널리 쓰 이는 Dirgo and Leith 식은 다음과 같다^[9].

$$g(x) = \frac{1}{1 + \left(\frac{x_{50}}{x}\right)^m} \tag{5}$$

x₅₀은 소위 컷-사이즈로 직경 x₅₀의 입자가 50% 집진 된다는 것을 의미한다. 식(5)의 지수항 m은 싸 이클론 등급집진효율 곡선의 기울기를 나타내는 것 이다. 많은 상업용 또는 실험실 수준의 싸이클론에 대한 조사결과 잘 설계되고 표면이 매끄럽게 마무 리된 싸이클론의 경우 식(5)의 지수항은 6.4의 값을 가지며, 크기가 큰 상업용 싸이클론의 경우 2에서 4 사이의 값을 가지는 것으로 알려져 있다. 위의 Dirgo and Leith 식에 의하면 싸이클론의 집진효율 은 컷-사이즈뿐만 아니라 지수항 m에 의해서도 영 향을 받음을 알 수 있다. 본 연구에서는 이 지수항 m을 기울기(slope)라 칭하겠다.

2.2 공급 분진의 입경분포

싸이클론의 고유의 성능인 등급접진효율과 달리 집진율은 공급분진의 입경분포에 따라 달라진다. 본 해석에서는 싸이클론의 성능실험에 많이 쓰이는 JIS 8종분진을 대상으로 하였다. JIS 8종 분진은 bi-modal 분포를 가지며, 해석상의 편의를 위해 8종 분진의 누적분포를 Rosin-Remmler 분포식으로 곡선 적합하여 사용하였다. Rosin-Remmler 분포식의 확률 분포함수 및 누적 분포함수는 다음과 같다.

$$f(x) = nkx^{n-1}\exp(-kx^{n})$$

$$F(x) = 1 - \exp(-kx^{n})$$
(6)

Fig. 1 Comparison of raw feed cumulative distribution data and curve fitted data.

Fig. 1은 입경분포 측정장비인 sizer-master를 이용하 여 측정한 8종분진의 누적분포와 이를 Rosin-Remmler 분포식으로 곡선적합한 결과이다.

2.3 2단 싸이클론의 집진율

Fig. 2는 2단 싸이클론의 개략적인 구조를 보여 준다.

Fig. 2 Schematic diagram of 2 stage cyclones.

Fig. 2의 소문자 f와 대문자 F는 각기 분진의 확률분포함수와 누적분포함수를 나타내며, 하첨 자 f는 공급분진, u는 1차와 2차 싸이클론에서 집 진되는 under-flow 그리고 o는 배출되는 over-flow 를 의미한다. 1차 사이클론에서 큰 입자를 제거 하고 미세 분진을 함유한 공기가 2차 사이클론으 로 들어간다. 1차와 2차 사이클론의 집진 효율이 각각 n₁, n₂라 하면 전체 시스템의 집진 효율 n는 다음과 같다.

$$\eta = 1 - \frac{M_3}{M_1} = 1 - (1 - \eta_1)(1 - \eta_2) \qquad (7)$$

1차 사이클론의 집진 효율 n₁은 1차 사이클론 의 등급집진효율 g₁(x)와 공급분진의 분포 F₁(x)에 의하여 다음과 같다.

$$\eta_1 = 1 - \frac{M_{u2}}{M_f} = \int_0^\infty g_1(x) dF_1(x)$$
 (8)

1차 사이클론을 통과하고 나오는 공기가 함유 하고 있는 분진의 분포함수는 식 (7)에 의하여 다 음과 같다.

$$f_{2}(x) = \frac{1 - g_{1}(x)}{1 - \eta_{1}} f_{1}(x)$$
(9)

식 (9)의 분포함수는 다음 식으로 누적 분포함

수로 변환되고

$$F_{2}(x) = \int_{0}^{x} f_{2}(x) dx$$
 (10)

이 분포를 가진 분진이 2차 사이클론의 공급분 진 분포가 되므로 2차 사이클론의 집진 효율은 다음 식과 같다.

$$\eta_2 = 1 - \frac{M_3}{M_2} = \int_0^\infty g_2(x) dF_2(x)$$
 (11)

3. 해석 결과

3.1 1단 싸이클론

이 절은 기울기, m이 2단 싸이클론의 집진율에 미치는 영향을 파악하기 위한 전 단계로 1단 싸 이클론에 대한 연구를 수행하였다.

Fig. 3은 컷-사이즈는 5µm로 동일하며, 기울기는 2와 4로 서로 다른 두 싸이클론의 등급집진효율 과 over-flow를 나타낸 것이다. 투입되는 분진은 Rosin-Remmler 분포식으로 곡선 적합된 8종분진 을 사용하였다.

Fig. 3 Variation of over-flow and grade efficiency with different slope.

Fig. 3을 살펴보면, 컷-사이즈는 동일하며, 기울 기가 다른 두 싸이클론에서 집진되지 않고 배출 되는 over-flow의 누적분포는 상당한 차이를 보임 을 알 수 있다. 기울기가 완만한 싸이클론의 경 우 over-flow 중 입경 즉 질량이 큰 입자의 분포 가 많으므로 집진율이 상대적으로 낮음을 예측 할 수 있다. 이상의 예의 경우 m이 2일 때 99.2% 의 집진율을 보이며, m이 4일때는 99.4%로 증가 한다. 즉 1단 싸이클론의 경우 기울기가 클 때 높은 집진율을 얻을 수 있다.

3.2 2단 싸이클론

Fig. 2와 같은 2단 사이클론을 생각하자. 2단 싸이클론의 경우 1단 싸이클론과 달리 2차 싸이 클론으로 투입되는 분진의 분포 즉 F₂가 1차 싸 이클론에 의해 영향을 받는다. 때문에 기울기가 증가하면 집진율이 높아지는 1단 싸이클론과 달 리 기울기와 집진율의 관계를 명시적으로 예측할 수 없다.

Fig. 4는 1, 2차 싸이클론의 컷사이즈가 각기 5 µm와 1µm인 2단 싸이클론의 기울기, m에 따른 영 향을 보여준다. Fig. 4-a)는 1, 2차 싸이클론의 기 울기가 각기 2와 4인 경우의 공급분진(Ff)에 대한 1, 2차 싸이클론에서 포집된 입경분포(Ful, Fu2)와 포집되지 않고 배출된 입경분포(Fol, Fol)를 보여 준다. Fig. 4-a)의 집진율은 99.48%이다. 2차 싸이 클론의 기울기가 2로 감소한 b)의 경우 최종적으 로 포집되지 않고 배출되는 입경의 분포가 a)의 경우에 비해 완만해지며, 입경이 큰 입자의 분포 가 많아짐을 볼 수 있다. b)의 집진율은 a)에 비 해 0.26%감소한 99.22%이다. 2차 싸이클론의 기 울기의 변화는 유입되는 분진의 분포에 영향을 주지 않는다. 때문에 1단 싸이클론의 경우와 같 이 2차 싸이클론의 기울기가 증가할 때 집진율이 증가하는 것을 볼 수 있다.

Fig. 4-c)는 1차 싸이클론의 기울기가 1로 감소 한 경우이다. 기울기가 감소하면, 큰 입자에 대한 집진효율은 감소하는 반면 상대적으로 작은 입자 에 대한 집진효율은 증가한다. 때문에 1차 싸이 클론의 기울기 작고 2차는 큰 경우, 2차 싸이클 론에 유입되는 미소입자의 절대량이 감소하여 2 단 싸이클론 전체의 효율은 상승한다.

c)의 경우 1단 싸이클론의 경우와 달리 집진율 이 증가했음을 볼 수 있다. 1차 싸이클론의 기울 기의 감소는 집진율의 감소를 초래하여 1차 싸이 클론의 효율이 91.57%에서 82.5%로 감소하나 2차 싸이클론의 효율이 93.8%에서 97.3%로 증가하여 전체 집진효율이 증가한다.

Fig. 4 Cumulative distribution of under-flow and over flow with different slope.

Table. 1은 기울기의 변화에 따른 1, 2차 싸이 클론의 집진율 변화를 나타낸 것이다.

with different s	lope.		
	n_1	<i>П</i> 2	η
$m_1=2, m_2=4$	0.9157	0.938	0.9948

0.9069

0.9922

0.9157

 $m_1=2, m_2=2$

Table. 1 Collection efficiency of each stage

Fig. 5는 1, 2차 싸이클론의 기울기의 변화에 따른 2단 싸이클론 전체 집진효율의 변화를 나타 낸 것이다. Fig. 5-a) 1차 싸이클론의 기울기의 영 향을 나타낸다. 2차 싸이클론의 기울기, m2가 작 은 경우 m1이 감소할 때 2단 싸이클론의 집진 율 은 감소한다. 특히 1, 2차 싸이클론의 기울기가 모두 작을 때의 집진율의 저하가 심한 것을 볼 수 있다. Fig. 5-b)는 집진율에 대한 m1의 영향이 반전되는 거동을 살펴보기 위해 m2를 1.44부터 1.5까지 변화시키며 집진율의 변화를 나타낸 것 이다. m2가 증가함에 따라 집진율이 점차 증가하 며, m2=1.46~1.48사이의 영역에서는 m1에 따라 집 진율이 감소하다 일정한 최소값을 가진 후 다시 증가하는 것을 볼 수 있다.

Fig. 5-c)는 집진율에 대한 m2의 영향을 나타낸 것이다. m2가 증가 할 때 m1에 무관하게 집진율 이 증가함을 볼 수 있으며, m1이 작고 m2가 클 때 최대 집진율이 얻어짐을 알 수 있다.

4. 결론

싸이클론의 성능을 나타내는 등급집진효율의 기울기가 2단 싸이클론의 집진율에 미치는 영향 을 조사하였다. 1단 싸이클론의 경우 등급집진효 율의 기울기가 급할수록 높은 집진 효율을 보인 다. 이와 유사하게 2차 싸이클론의 등급집진효율 곡선의 기울기가 급할 때 높은 집진효율을 보인 다. 2차 싸이클론의 기울기가 완만할때는 1차의 기울기가 감소함에따라 집진율이 감소하며, 2차 의 기울기가 급할 경우에는 반대로 집진율이 상 승한다. 또한 1차 싸이클론의 기울기가 완만하고 2차의 기울기가 큰 경우에 최대 집진율을 얻을 수 있다.

후 기

본 연구는 삼성광주전자 청소기 개발팀의 협조 로 이루어졌으며 이에 감사드립니다.

참고문헌

(1) G. Ravi, Santosh K. Gupta, and M.B. Ray, 2000, "Multiobjective Optimization of Cyclone Separators Using Genetic Algorithm", Ind. Eng. Chem. Res., Vol. 39, pp. 4272-4286.

Fig. 5 Variation of collection efficiency.(a) and b) are m_1 , c) is m_2)

2nd cyclone stiffness

3

2

0.96

0.95

0.94

c)

m₁=0.5

m1=1 m1=2 m₁=3

m,=4

4

- (2) Madhumita B. Ray, Chi Tien, Alex C. Hoffmann, and M.I.L Beumer, "Numerical Simulation of the Swirl Flow Pattern and Grade Efficiencies in Gas-Solid Separators", Proc. Asia-Pacific Conf. on Sustainable Energy and Environmental Technology, pp. 290-297.
- (3) A.J. Hoekstra, J.J. Derksen, and H.E.Q. Van Den Akker, "An experimental and numerical study of turbulent swirling flow in gas cyclones", Chemical Eng. Science, Vol. 54, 1999, pp. 2055-2065.
- (4) W. Peng, A.C. Hoffmann, P.J.A.J Boot, A. Udding, H.W.A Dries, A. Ekker, J. Kater, 2002, "Flow pattern in reverse-flow centrifugal separators", Powder Technology, Vol 127, pp. 212-222.
- (5) Dong-Jin Kwack, 2000, "A study on optimal design of cyclone system for a vacuum cleaner", Pusan National University.
- (6) S. Y. Seol, K. S. Heo, M. H. Kim, 2003, "Analysis of Collection efficiency and Pressure loss for a small syslone", KSME, pp. 99-104.
- (7) K.S. Lim, H.S. Kim, K.W. Lee, 2004, "Comparative performances of conventional cyclones and a double cyclone with and without an electric field, Aerosol Science", Vol 35, pp. 103-116.
- (8) Bangxian Wu, Shi Liu, Haigang Wang, 2002, "A study on advanced concept for fine particle separation, Experimental Thermal and Fluid Science", Vol 26, pp. 723-730.
- (9) A.C. Hoffmann and L.E. Stein, 2002, "Gas Cyclones and Swirl Tubes", Springer-Verlag Berlin Heidlberg 2002, pp 77-96.