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Effect of viscous interfaces on bending of orthotropic rectangular laminate
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Abstract

This paper investigates asimply supported orthotropic rectangular laminate with viscous interfaces subjected to
bending. Additional mathematical difficulty is involved due to the presence of viscous interfaces because the behavior
of the laminate depends on time. A step-by-step state-space approach is suggested, which is directly based on the three-
dimensional theory of elasticity. In particular, Taylor's expansion theorem is employed to model the variations of field
variables with time. The proposed method is suitable for analyzing laminated plate of arbitrary thickness. Numerical

calculations are performed and it is shown that the viscous interfaces have a significant fluence on the response.

1. Introduction

Recently, many researchers have devoted themselves
to laminated plates and shells featuring interlaminar
(10 The

interlaminar interfaces can be modeled by various
(11-13)

bonding imperfections imperfections of

simplified models . Most above-mentioned works
employed the linear interfacial model (or the spring-layer
model) "*'> | using which the static deformations and
stresses of laminates are solely functions of the spatial
coordinates.

Experimental evidence showed that viscous interfacial
sliding could be induced in fiber-matrix composites due
to high temperature '® . In the conventional design of
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sensors and transducers, viscous interfacial couplants are
different
. It is also noted that viscous interfacial

usually adopted to functional

an

integrate
components
layers are sometimes introduced artificially to tailor the

mechanical properties of laminates, such as the damping

(18)

performance . He and Jiang " recently made a first

step in this respect. They derived an exact solution of

layered isotropic strips in cylindrical bending by

extending the famous Pagano’s solution ! .

As pointed by Noor and Burton *”

, the conventional
three dimensional analyses, such as the Pagano’s method,
is computationally expensive when the laminate has a
great number of layers. In the case of an anisotropic
laminate with viscous interfaces, the analysis presented

by He and Jiang ¥

will become more expensive from
the view point of computation. On the other hand, the
state-space approach has been proved to be very effective
in analyzing laminated structures because the number of
the final solving equations keeps unchanged regardless

of the layer number "%,
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In this paper, the time-dependent response of a simply
thick
featuring interfacial viscosity is considered.

supported

orthotropic  rectangular laminate

2. State-space formulations
The state-space formulations for an orthotropic body

(23)

have been derived by Fan and Ye ' . Here we just give

a brief review for completeness. When o_, u, v, w,
7. and 7 are chosen as the state variables, the state

equation can be derived from the constitutive equations

el - . 23
and equilibrium equations as **
Where
[ o 2] 1
0o -2 <
N0
1
[ 0 ; 0 [
u 1 u
sym. —
oV _ 4 Cyy v
o lwl i 7&& Czsé w
T, Cs3 ch ox ' Cy3 sz 7.
0 0 0
T, -4, e c,,(,y -5 o 0 T,
5 o
sym 7ﬁ1$ Cos ot
B 5 13623 el 2)
Bi=cu——"" By=cp+eg =c, -2

It is noted that in deriving Eq. (1), the inertia effect is
neglected as the deformation of the plate is considered to

be very slow ® .

A z

h
b
A
Zk
>
F
ig. | Geometry of a rectangular laminated plate and the

coordinate.

An N -layered orthotropic rectangular plate is

depicted in Fig. 1. If the plate is simply supported at all
four edges, we can assume
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o. - )T (&, t)sin(maé)sin(nan)
u hu (¢, t)cos(maé)sin(nmn)
v (S, t)sin(mz&)cos(nzn) |’ &)
w | Ww(C,0)sin(maé)sin(nzn)
Ty 7. ({ 1) cos(mag)sin(nzn)
T, 7. (& 1) sin(maé) cos(nn)
where (=z/h , £=x/a and p=y/b are

dimensionless coordinates, m and 7 are half-wave

M

numbers, and C,,

represents the elastic constant of the

first layer (the bottom layer). The substitution of Eq. (3)
into Eq. (1) yields

0 4
V(.0 = AV(S, 1) “)
¢
— — = — = = T
where V(¢,0)=[5,,u,v,w,7,,,7,]" ,and
0 _fl -4
0)
c
(1} #o0
e . (5
0)
c
sym. 44
Caq
— (O] . .
A _ Cy mtl Cy3 f,
C33 C33 C33
12, %6 2 2
Ttl +T12 o 1, 0
Cyy 44 44
B Ce6 2 X
sym. “arfa
Cus Cua

with ¢, =mah/a and ¢, =nzh/b. The solution to
Eq. (4) can be obtained as **

V(&.1) = exp[A(§ = ¢ DIV(E,1,1)»

(1 SC<E k=12, N), (6)

where ¢, =0, ¢, =zk/h=zl;:1hj/h, and 5, is
the thickness of the k th layer.

Setting ¢ =¢, in Eq. (6), yields

VO MV, (7)

where Vo and v are the state vectors at the
upper and lower surfaces of the k th layer, respectively,
and M, =exp[A({, —¢, )] is the transfer matrix.

Similarly, we get for the (k + 1) th layer

Vl(k+l) _ MkHVékH). )
3. Viscous interface conditions

For the viscous interface between the k th and
(k +1) th layer, we have ¥
gmzﬁ, '<k>=£ at z =12z, ©)
o g
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where a dot indicates differentiation with respect to time,

(k)
Up

and 77;") are the viscous coefficients in x and

Yy directions, respectively, and 5)§k) and 5y(k) are

the relative sliding displacements. The initial condition is

s® = 5;_") =0 at t=0 . The conditions at the
interfaces then read as
PN gl NS g
UV =y g 5Oy 5, (10)
wt =w® at z=2,.

In view of Eq. (3), we assume

5" =hé ™ (t)cos(maé)sin(nzn)

5 =hs ™ (t)sin(mré)cos(nn) - (11)

Thus, Eq. (10) can be rewritten as

VD Zy® QW (12)
(k) _ NGRS T
where Q™ =[0,06,",6,7,0,0,0]" . It can be
shown that 5:(1{) and é_';k) satisfy
Sk S (k)
ds” — 700, ds, =705 ®, at z=z,, (13)
dr = dr w
where 7 =c{¢/[n"h] is the dimensionless time,
and 7,9 =" /p™ (i=x,y) are the viscosity
ratios. Note that for a perfect interface, we have
Q(k) =0.
Now we divide the time domain into a series of equal
intervals [pAz,(p+1)A7] (p=0,1,2,---) , each

with a small length of A7 . For a typical interval,

according to the Taylor’s expansion theorem, we have

S (k)
wa T2

3 =88 +(r—pATYSS) + (1 - pAT)’ 6%, + (7 - pAT)’S

.l .2

oW = 5“" +(t=pAT)S® +(r - pAT) 6 X, + (= pAT)’ 5E, +--- 5

w1 .2 w3

ah —0'“‘) +(r— pAT)O'(k) +(r— pAr)zf”‘) +(z— pAT) 0'“‘) oy
29 =) + (- pADEY) + (0 - pAD T + (- pATY T+ 5
v =8+ (e = pATIV + (0 pAT)’ V) + (2 - pAT) VL s

3—A)

w® = “‘) ot (= pAr)w“” +(7— pAT)’W +(r PAT) W ey

T® = +(r pAT)Trp] +(r - pAr)? Trpz-%—(T pAT)? T“‘fs +e
7)_") )(Ilj)oJr(T pA’[)’[;:)l + (- pAT)2 y(,',‘)z +(Tprr) T(“ e

(14)

Obviously, we have 5;(% 5‘((’)‘)0 =0 because of

the zero initial condition at # =7 = 0. Thus Eq. (12)
can be written as

VED =V QW (p,i=0,1,2,--), (15)

0,p,i

where Q;"} [0,6% 5% 0,0,0]". We also obtain

xp,i 2 T yp,i2
from Eq. (13) by equating coefficients of the same order
of 7 atthe two sides

S (k) _ =) (k) Sk _ =(k) (k)
5Xp1_TVp1177 /l 5yp1_rvp1177 /l

(i=123,-) - (16
From Egs. (7), (8), (14) and (15), we can establish

V]</;+,1> MMV](AP), +Mk+lQ§fl?,(p, i=0,1,2,---). (17
Continuing the above procedure layer by layer, we

finally obtain

v =1vd +s . (p,i=0,12,--), (18)

1 . .
where T:I Ij:NM./ is the global transfer matrix
and

S _MVQ(N DM Ml\ IQ(V D4 +HM Q(l) ) (19)

are the inhomogeneous terms associated with viscous
interfaces, which vanish in the case of a perfectly bonded
laminate.

If the state variables at the bottom surface are
determined from Eq. (18) after applying the boundary
conditions (see the next section), the ones at any interior
point can be calculated as

V(&) =exp[A(L - & )][ f[M Ve, (20)

Jj=k-1

2
+M,, QY + M, M,,Q% Y + -+ ]_[M,Q‘p‘ij,
Jj=k—1

(& £¢6<&s p,i=0,12,--).

Then, the other three variables can be determined as

ov
+ﬂ1 +(,B2 Cos) " o, =z =0, +(f, - Cés) +ﬂx
c33 oy Cy3 8y

Ty :Caa(al*'@) (21)

oy Ox

4. Boundary conditions and solution
In this paper, it is assumed that generally distributed

normal pressures ¢,(x) and ¢,(x) are applied on

the bottom and top surfaces, respectively. These loads
can be expanded in terms of double sine functions as
follows

q,(x)=cl) z z a,, sin(mz&)sin(nzn)

m=1 n=1
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q,(x)=cl) i i b, sin(mz&)sin(nzn), (22)

m=1 n=1

where

1p1 . .
[a,.b,1=[4/c81] [ [4,(6). 4,()lsin(mz&) sin(nzr)d &dn
. In view of Egs. (3) and (14), the boundary conditions
for arbitrary m and n are

= (1)
p.0

—(v)

=
[

mn> @ pi

—(v)

=b =0,

=a

£=0

=0, (i=1,2,3,-)’
¢=1 §=0 =1

¢

(23)

=

i

—_ 7z
= Caxpi

£=0

—_ 7z — =(N)
=Ty =0 Top.i

I= ¢

Applying the above boundary conditions in Eq. (18),

leads to
b/ﬂﬂ (}V) amn (1}
tf(l) 12(0) , (p=0,1,2,), (24)
v | T v(0) .S
w)[ W) o
0 0
O p.0 O p.0
0 (N) 0 (1)
a) |a©) (=012 .
5(1) 7(0) . : 25)
_ :Ti +S i l=192339'”)
w(l) w(0) "
0 0
0 0

pii i

5. Numerical examples
The three-ply laminate subjected to a uniformly
distributed normal the top surface

pressure  on

(g, = p, ), which was investigated by Srinivas and Rao

@9 is re-considered. Comparison is made in Table 1,

where a good agreement can be observed.

Table 1 Bending of a three-layered orthotropic plate

under uniform pressure p, applied at the top surface.

Quantity Present study Srinivas ?©
ePw(al2,b/2,2)(hp,)
At mid surface -159.38 -159.38
o.(al2,b/2,2)/ p,
Top ply at top surface -65.3743 -65.332
Top ply at interface -48.8259 -48.857
Mid ply at upper interface -4.90003 -4.9030
Mid ply at lower interface 4.85997 4.8600
Bottom ply at interface 48.6092 48.609

Bottomplyatbottom surface 65.0828 65.083
7.(0,b/2,2)/ p,

At upper interface -3.90825 -3.9285
Ad mid surface -4.09568 -4.0959
At lower interface -3.51543 -3.5154

Note: The material constants and plate geometry are

the same as the three-layered plate considered by

Srinivas and Rao ®® with Y= cl(i) /01(12) =10.

In the following, we assume only a normal sinusoidal
pressure, g = p, sin(z&)sin(z7) is applied at the top
surface of the plate. In addition, the viscosity coefficients
in are assumed identical

x and y directions

(7® =7® :ﬁ}f“) but may be different for different
interfaces. The following non-dimensional quantities are
introduced:

__o:(a/2b2z0, 2007220,

Po Po
(@202 e war2.b/2.z0,
20 0 Po h
oG u@b/220) el Wal20.20), (26)
Py h 0 D h
5 =S 8ODI2D - o e 6,(@/200).
1 h 2 h
Po Py

Table 2 Convergence study of the present method for

a two-layered isotropic strip.

(€3} (2)
M,A7) O w, U, u, Wy
0
(3,0.) 04215  -4.3926 110745 272.144
10.745
(3,005) 04215  -4.3926 T 10745 -272.144
10.745
(4,0.1) 04215 -4.3926 T L0745 272.144
10.745
(4,005) 04215  -4.3926 T 110745 -272.144
10.745
Ref(18) 04215 -4.3926 T 10746 272169
10.746
200 (3,01) 03397 22968  26.666 -37.9787 -555.770
(3,0.05) 03397 22968  26.666 -37.9788 -555.771
(4,0.1) 03397 22968 26666 -37.9788 -555.771
(4,005) 03397 22968  26.666 -37.9788 -555.771
Ref(18) 03397 22965  26.674 -37.986  -555.863

Note: The results are at the interface.
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Next, we consider the bending problem of a simply
supported five-layered cross-ply rectangular laminate, of
which the aspect ratio 4/a is fixed at 0.1. The
thickness of each layer involved in the laminate is
considered to be identical. The second and fourth

interfaces are assumed to be perfect, while the first and
third ones are viscous with 77" = 27" The following
typical material properties are adopted:

E /E, =25,G/E, =05,

G /E; =02, p=py =025 (27)

where E is the Young’s modulus, G the shear

modulus, £ the Poisson’s ratio and subscripts L and

T indicate, respectively, directions parallel and
perpendicular to the fibers. The stacking sequence is

(0/90/0/90/0°), from the bottom (£ =0) to top (' =1).
In the following, M =4 and A7 =0.05 will always

be assumed, for which the results are of high accuracy as

shown in the last example.
alb=1

—0— =0
—O0— =5
084 | O =100
—O— =200

0.6 -

0.4 4

0.2

0.0

T
-20 -10 20

Fig. 2 Distributions of state variables through thickness:

@) o;(0) @;() @,;(d) Wy;(e) uy;and () v,.

(KIHZHH & Fig. 29 (a),(b),(c),(d),(e)= & X %)
Fig. 3
(£=02) (@ 0; () wy; (© @, @,; d) ul’,

u(()z) ; and (e) v(()l) , v(()z)

(RIHZH A Fig. 32| (a),(b),(c)(d)E &K &£3)

Variations of state variables versus time

e
it /
3521%0 / -
— — bla=10 /
— - bla=1 L
7
/
¢ h & —
/ e
e
/
///
<
- /
- /
0 .
20 10 0 10 20

Vo

Fig. 4 Distributions of state variables through
thickness at 7 =10 for different values of a/b: (a)
;) w;(c) @,;(d) wy;(e) uy;and(f) v,.
(RHZH A Fig. 42| (a),(b),(c),(d),(e)= & Xl %£S)

The distributions along the thickness direction of the
six non-dimensional state variables defined in Eq. (26)
are given in Figs. 2(a)-(f), respectively for the laminate

of a/b =1.The tangential displacements U, and Vv,

become discontinuous across the two viscous interfaces
when 7 # 0 due to the relative sliding, as shown in
Figs. 2(e) and 2(f). The two transverse shear stresses are
nearly zero at the two viscous interfaces when 7 =100

and 7 =200, as shown in Fig. 2(b) and Fig. 2(c),
because when 7 —> o0 the interfaces will lose the
capability of transferring shear stress gradually. This has
also been observed by He and Jiang "'* for an isotropic
strip. In this respect, the correctness of the present
method is again verified.

The variations of the six state variables versus time at

¢ =0.2 are shown in Fig. 3, indicating a significant

mutate at the earlier stage for all variables. Different

sliding phenomena are observed in the X and y
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directions, as shown in Figs. 3(d) and 3(e).

Figure 4 displays the through-thickness distributions
of the state variable for various aspect ratios (a/b =1,

10, 100, o) at 7=10. It is seen that the results for
a/b>10

are almost the same except for @, and V.

In the cylindrical bending problem, @, and Vv, are

usually ignored, which however, deviate significantly

from that of an actual rectangular plate even for

b/a =10, as shown in Figs. 4(c) and 4(f).

6. Conclusions

A step-by-step state-space approach is proposed in
this paper to study the time-dependent behavior of
orthotropic laminated rectangular plates with viscous
interfaces. The analysis is directly based on the three-
dimensional equations of an orthotropic elastic body
without introducing any assumption regarding the
through-thickness distributions of deformations and
stresses. Comparison with existent results is made and
good agreement is obtained. Just like that predicated by
the two-dimensional exact solution for an isotropic strip
(18), we observe that the behaviors of laminate will
gradually approach a final state for which the viscous

interfaces lose the function of transferring shear stresses.
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