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Abstract 

   This paper investigates asimply supported orthotropic rectangular laminate with viscous interfaces subjected to 
bending. Additional mathematical difficulty is involved due to the presence of viscous interfaces because the behavior 
of the laminate depends on time. A step-by-step state-space approach is suggested, which is directly based on the three-
dimensional theory of elasticity. In particular, Taylor's expansion theorem is employed to model the variations of field 
variables with time. The proposed method is suitable for analyzing laminated plate of arbitrary thickness. Numerical 
calculations are performed and it is shown that the viscous interfaces have a significant fluence on the response.  

 

1. Introduction 

Recently, many researchers have devoted themselves 
to laminated plates and shells featuring interlaminar 
bonding imperfections (1-10). The imperfections of 
interlaminar interfaces can be modeled by various 
simplified models (11-13) . Most above-mentioned works 
employed the linear interfacial model (or the spring-layer 
model) (14,15) , using which the static deformations and 
stresses of laminates are solely functions of the spatial 
coordinates.  

Experimental evidence showed that viscous interfacial 
sliding could be induced in fiber-matrix composites due 
to high temperature (16) . In the conventional design of 

sensors and transducers, viscous interfacial couplants are 
usually adopted to integrate different functional 
components (17) . It is also noted that viscous interfacial 
layers are sometimes introduced artificially to tailor the 
mechanical properties of laminates, such as the damping 
performance (18) . He and Jiang (18) recently made a first 
step in this respect. They derived an exact solution of 
layered isotropic strips in cylindrical bending by 
extending the famous Pagano�s solution (19) .  

As pointed by Noor and Burton (20) , the conventional 
three dimensional analyses, such as the Pagano�s method, 
is computationally expensive when the laminate has a 
great number of layers. In the case of an anisotropic 
laminate with viscous interfaces, the analysis presented 
by He and Jiang (18) will become more expensive from 
the view point of computation. On the other hand, the 
state-space approach has been proved to be very effective 
in analyzing laminated structures because the number of 
the final solving equations keeps unchanged regardless 
of the layer number (21-24) .  
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In this paper, the time-dependent response of a simply 
supported thick orthotropic rectangular laminate 
featuring interfacial viscosity is considered.  

 
2. State-space formulations 

The state-space formulations for an orthotropic body 
have been derived by Fan and Ye (23) . Here we just give 
a brief review for completeness. When zσ , u , v , w , 

xzτ  and 
yzτ  are chosen as the state variables, the state 

equation can be derived from the constitutive equations 
and equilibrium equations as (23) 
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It is noted that in deriving Eq. (1), the inertia effect is 
neglected as the deformation of the plate is considered to 
be very slow (18) . 

F
ig. 1 Geometry of a rectangular laminated plate and the     

   coordinate. 
 
An N -layered orthotropic rectangular plate is 

depicted in Fig. 1. If the plate is simply supported at all 
four edges, we can assume 
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where hz /=ζ  , ax /=ξ  and by /=η  are 

dimensionless coordinates, m  and n  are half-wave 

numbers, and )1(
44c  represents the elastic constant of the 

first layer (the bottom layer). The substitution of Eq. (3) 
into Eq. (1) yields 

),(),( tt ζζ
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AVV =
∂
∂ ,                   (4) 

where T],,,,,[),( yzxzz wvut ττσζ =V , and 
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with ahmt /1 π=  and bhnt /2 π= . The solution to 

Eq. (4) can be obtained as (25) 
),()](exp[),( 11 tt kk −−−= ζζζζ VAV ,    

),,2,1,( 1 Nkkk L=≤≤− ζζζ ,                 (6) 
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the thickness of the k th layer.  
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kζζ =  in Eq. (6), yields 
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where )(
1
kV  and )(

0
kV  are the state vectors at the 

upper and lower surfaces of the k th layer, respectively, 
and )](exp[ 1−−= kkk ζζAM  is the transfer matrix. 

Similarly, we get for the )1( +k th layer 
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3. Viscous interface conditions 

For the viscous interface between the k th and 
)1( +k th layer, we have (18) 
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where a dot indicates differentiation with respect to time, 
)(k

xη  and )(k
yη  are the viscous coefficients in x  and 

y  directions, respectively, and )(k
xδ  and )(k

yδ  are 

the relative sliding displacements. The initial condition is 
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k
x δδ  at 0=t . The conditions at the 
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44 htc xητ =  is the dimensionless time, 
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ix

k
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ratios. Note that for a perfect interface, we have 
0)( =kQ . 

Now we divide the time domain into a series of equal 
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with a small length of τ∆ . For a typical interval, 
according to the Taylor�s expansion theorem, we have 
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Obviously, we have 0)(
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the zero initial condition at 0== τt . Thus Eq. (12) 
can be written as 

)(
,

)(
,,1

)1(
,,0

k
ip

k
ip

k
ip QVV +=+ , ),2,1,0,( L=ip ,          (15)

where T)(
,

)(
,

)(
, ]0,0,0,,,0[ k

iyp
k
ixp

k
ip δδ=Q . We also obtain 

from Eq. (13) by equating coefficients of the same order 
of τ  at the two sides 

ii k
y

k
iyp

k
iyp

k
x

k
ixp

k
ixp /,/ )()(

1,
)(
,

)()(
1,

)(
, ητδητδ −− == , 

),3,2,1( L=i                          .    (16)
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Continuing the above procedure layer by layer, we 
finally obtain 
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are the inhomogeneous terms associated with viscous 
interfaces, which vanish in the case of a perfectly bonded 
laminate. 

If the state variables at the bottom surface are 
determined from Eq. (18) after applying the boundary 
conditions (see the next section), the ones at any interior 
point can be calculated as 
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4. Boundary conditions and solution 

In this paper, it is assumed that generally distributed 

normal pressures )(xqb  and )(xqt  are applied on 

the bottom and top surfaces, respectively. These loads 
can be expanded in terms of double sine functions as 
follows 
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Applying the above boundary conditions in Eq. (18), 
leads to   
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5. Numerical examples 

The three-ply laminate subjected to a uniformly 
distributed normal pressure on the top surface 

( 0pqt = ), which was investigated by Srinivas and Rao 
(26) , is re-considered. Comparison is made in Table 1, 
where a good agreement can be observed. 
 
Table 1 Bending of a three-layered orthotropic plate 

under uniform pressure 0p  applied at the top surface. 

Quantity Present study Srinivas (26) 

)/(),2/,2/( 0
)2(

11 hpzbawc    

At mid surface -159.38 -159.38 

0/),2/,2/( pzbaxσ    

Top ply at top surface -65.3743 -65.332 
Top ply at interface -48.8259 -48.857 
Mid ply at upper interface -4.90003 -4.9030 
Mid ply at lower interface 4.85997 4.8600 
Bottom ply at interface 48.6092 48.609 

Bottomplyatbottom surface 65.0828 65.083 

0/),2/,0( pzbxzτ    

At upper interface -3.90825 -3.9285 
Ad mid surface -4.09568 -4.0959 
At lower interface -3.51543 -3.5154 

Note: The material constants and plate  geometry are 
the same as the three-layered plate considered by 

Srinivas and Rao (26) with 10/ )2(
11

)1(
11 == ccγ . 

 
In the following, we assume only a normal sinusoidal 

pressure, )sin()sin(0 πηπξpqt =  is applied at the top 

surface of the plate. In addition, the viscosity coefficients 
in x  and y  directions are assumed identical 
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k
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k ηηη == ) but may be different for different 

interfaces. The following non-dimensional quantities are 
introduced: 
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Table 2 Convergence study of the present method for 
a two-layered isotropic strip. 

τ
τ ),( τ∆M σ  1ω  

)1(
0u  

)2(
0u  0w  

0 
(3, 0.1) 0.4215 -4.3926 

-
10.745 

-10.745 -272.144 

(3,0.05) 0.4215 -4.3926 
-

10.745 
-10.745 -272.144 

(4, 0.1) 0.4215 -4.3926 
-

10.745 
-10.745 -272.144 

(4,0.05) 0.4215 -4.3926 
-

10.745 
-10.745 -272.144 

Ref(18) 0.4215 -4.3926 
-

10.746 
-10.746 -272.169 

20 (3, 0.1) 0.3397 -2.2968 26.666 -37.9787 -555.770 

(3,0.05) 0.3397 -2.2968 26.666 -37.9788 -555.771 

(4, 0.1) 0.3397 -2.2968 26.666 -37.9788 -555.771 

(4,0.05) 0.3397 -2.2968 26.666 -37.9788 -555.771 

Ref(18) 0.3397 -2.2965 26.674 -37.986 -555.863 

Note: The results are at the interface. 
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Next, we consider the bending problem of a simply 

supported five-layered cross-ply rectangular laminate, of 

which the aspect ratio ah /  is fixed at 0.1. The 

thickness of each layer involved in the laminate is 
considered to be identical. The second and fourth 
interfaces are assumed to be perfect, while the first and 

third ones are viscous with )3()1( 2ηη = . The following 

typical material properties are adopted: 

25/ TL =EE , 5.0/ TLT =EG ,  

2.0/ TTT =EG , 25.0TTLT == µµ           (27) 

where E  is the Young�s modulus, G  the shear 

modulus, µ  the Poisson�s ratio and subscripts L  and 

T  indicate, respectively, directions parallel and 
perpendicular to the fibers. The stacking sequence is 
(0/90/0/90/0°), from the bottom ( 0=ζ ) to top ( 1=ζ ). 

In the following, 4=M  and 05.0=∆τ  will always 

be assumed, for which the results are of high accuracy as 
shown in the last example.  

                      (f) 
Fig. 2 Distributions of state variables through thickness: 

(a) σ ; (b) 1ω ; (c) 2ω ; (d) 0w ; (e) 0u ; and (f) 0v . 

(지면관계상 Fig. 2의 (a),(b),(c),(d),(e)는 싣지 않음) 

Fig. 3  Variations of state variables versus time 

( 2.0=ζ ): (a) σ ; (b) 0w ; (c) 1ω , 2ω ; (d) )1(
0u , 

)2(
0u ; and (e) )1(

0v , )2(
0v  

(지면관계상 Fig. 3의 (a),(b),(c),(d)는 싣지 않음) 

Fig. 4 Distributions of state variables through 
thickness at 10=τ  for different values of ba / : (a) 

σ ; (b) 1ω ; (c) 2ω ; (d) 0w ; (e) 0u ; and (f) 0v . 

(지면관계상 Fig. 4의 (a),(b),(c),(d),(e)는 싣지 않음) 
 
The distributions along the thickness direction of the 

six non-dimensional state variables defined in Eq. (26) 
are given in Figs. 2(a)-(f), respectively for the laminate  

of 1/ =ba . The tangential displacements 0u  and 0v  

become discontinuous across the two viscous interfaces 

when 0≠τ  due to the relative sliding, as shown in 

Figs. 2(e) and 2(f). The two transverse shear stresses are 

nearly zero at the two viscous interfaces when 100=τ  

and 200=τ , as shown in Fig. 2(b) and Fig. 2(c), 

because when ∞→τ  the interfaces will lose the 

capability of transferring shear stress gradually. This has 
also been observed by He and Jiang (18) for an isotropic 
strip. In this respect, the correctness of the present 
method is again verified.  

The variations of the six state variables versus time at 

2.0=ζ  are shown in Fig. 3, indicating a significant 

mutate at the earlier stage for all variables. Different 
sliding phenomena are observed in the x  and y  
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directions, as shown in Figs. 3(d) and 3(e). 
Figure 4 displays the through-thickness distributions 

of the state variable for various aspect ratios ( 1/ =ba , 

10, 100, ∞ ) at 10=τ . It is seen that the results for 

10/ ≥ba   are almost the same except for 2ω  and 0v . 

In the cylindrical bending problem, 2ω  and 0v  are 

usually ignored, which however, deviate significantly 
from that of an actual rectangular plate even for 

10/ =ab , as shown in Figs. 4(c) and 4(f). 

 
6. Conclusions 
A step-by-step state-space approach is proposed in 

this paper to study the time-dependent behavior of 
orthotropic laminated rectangular plates with viscous 
interfaces. The analysis is directly based on the three-
dimensional equations of an orthotropic elastic body 
without introducing any assumption regarding the 
through-thickness distributions of deformations and 
stresses. Comparison with existent results is made and 
good agreement is obtained. Just like that predicated by 
the two-dimensional exact solution for an isotropic strip 
(18), we observe that the behaviors of laminate will 
gradually approach a final state for which the viscous 
interfaces lose the function of transferring shear stresses. 
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