S-Allyl-L-cysteine, a Garlic Compound, Selectively Protects Cultured Neurons from ER Stress-induced Neuronal Death

  • Published : 2004.11.01

Abstract

We have assessed amyloid ${\beta}-peptide$ $(A{\beta})-induced$ neurotoxicity in primary neurons and organotypic hippocampal slice cultures (OHC) in rat. Exposing cultured hippocampal and cerebellar granule neurons to $A{\beta}$ resulted in a decrease of MTT reduction, and in destruction of neuronal integrity. Treatment of these neurons with tunicamycin, an inhibitor of N-glycosylation in the endoplasmic reticulum (ER), also decreased MTT reduction in these neurons. S-allyl-L-cysteine (SAC), an active organosulfur compound in aged garlic extract, protected hippocampal but not cerebellar granule neurons against $A{\beta}$- or tunicamycin-induced toxicity. In the hippocampal neurons, protein expressions of casapse-12 and GRP 78 were significantly increased after $A{\beta}_{25-35}$ or tunicamycin treatment. The increase in the expression of caspase-12 was suppressed by simultaneously adding $1{\mu}M$ SAC in these neurons. In contrast, in the cerebellar granule neurons, the expression of caspase-12 was extremely lower than that in the hippocampal neurons, and an increase in the expression by $A{\beta}_{25-35}$ or tunicamycin was not detected. In OHC, ibotenic acid (IBO), a NMDA receptor agonist, induced concentration-dependent neuronal death. When $A{\beta}$ was combined with IBO, there was more intense cell death than with IBO alone. SAC protected neurons in the CA3 area and the dentate gyrus (DG) from the cell death induced by IBO in combination with $A{\beta}$, although there was no change in the CA1 area. Although protein expression of casapse-12 in the CA3 area and the DG was significantly increased after the simultaneous treatment of AI3 and IBO, no increase in the expression was observed in the CA1 area. These results suggest that SAC could protect against the neuronal cell death induced by the activation of caspase-12 in primary cultures and OHC. It is also suggested that multiple mechanisms may be involved in neuronal death induced by AI3 and AI3 in combination with IBO.

Keywords