A10

Introgression for agronomic traits from Oryza minuta into rice, O. sativa

F.X.Jin¹, S.J.Kwon², K.H.Kang², X.B.Xie, H.L.Le and <u>S.N.Ah</u>n¹

- 1) College of Agriculture & life sci, Chungnam National University
- 2) National Institute of Agriculture Biotechnology 3) National Institute of Crop Science

OBJECTIVES

To identify and characterize alien QTLs underlying traits of agronomic importance in backcross progeny derived from a cross between Oryza sativa and O. minuta using PCR-based markers

MATERIALS AND METHODS

- o Plant materials
 - Parent: Hwaseong and WH79006 (Hwaseong/O. minuta BC5F6)
 - Mapping population: 75 F_{2:3} lines
- o Genotyping: SSR markers
- o Traits evaluated: heading date, culm length, panicle length and panicle number, seed length, width and thickness, 1,000 seed weight and seed length/width ratio, seeding height

RESULTS AND DISCUSSION

- o The frequency distribution of 10 traits in 75 F_{2:3} lines showed nearly normal distribution, and transgressive segregants exceeding the parental scores were observed (Fig.2).
- o To detect association of introgression with morphological traits, single point analysis was employed. Total five QTLs were identified and located on chromosome6, 7, 10, 11, which explained ranging from 5.4-12.5% of the total phenotype variation (Fig.1, Table 1). Among these QTLs identified, four associated with culm length, seed thickness, 1,000 seed weight, L/W ratio of seed, respectively, have not been detected in the previous QTL studies between *Oraza* cultivars, indicating potentially novel alleles from *O. minuta*, while One QTL, sl11, was located in the similar region as a grain length QTL from previously QTL studies. The QTLs detected in this study might provide a rich source of information about the natural genetic variation underlying the evolution of rice.

Fig. 1. A map with polymorphic markers between the parents. QTLs are labeled on the left of the chromosome. Dark chromosome regions mark the specific *O. minuta* introgressions.

Table 1. QTLs detected for five traits based on single-point analysis in an F2:3 population.

Trait	QTL	SSR	R ² (%) —	Mean			
				H/H [*]	H/W	W/W	Allele effect
Culm length	cl6	RM225	9.6	69.65	72.79	75.59	3.00
Seed length	sl11	RM536-RM3701	12.5	5.21	5.30	5.32	0.06
1,000 seed wt.	tsw7	RM18	5.8	24.33	24.41	26.39	1.03
Seed thickness	st7	RM478	5.4	2.11	2.12	2.18	0.04
Seed L/W ratio	lw10	RM474	5.9	1.82	1.76	1.77	-0.03

^{*:} H/H, H/W, W/W: Hwaseong homozygote, Hwaseong / WH79006 heterozygote, WH79006 homozygote, respectively.

Fig. 2. Frequency distribution of 4 traits in the F_{2:3} population (P1: Hwaseongbyeo, P2: WH79006).