[OA1-1] [2004-10-22 13:30 - 13:45 / Room 205]

Hesperetin inhibits rabbit platelet aggregation by inhibition of PLC $\gamma 2$ phosphorylation

and cyclooxygenase activity

Jin Yong-Ri^o, Cho Mi-Ra, Yuk Dong-Yeon, Yun Yeo-Pyo

College of Pharmacy, Chungbuk National University, Cheongju 361-763, Korea, College of Pharmacy, Research

Center for Bioresource and Health, Chungbuk National University, Cheongju 361-763, Korea

The objective of present study was to investigate antiplatelet activity of hesperetin in vitro and ex vivo. In

addition, possible antiplatelet mechanism was also investigated. Hesperetin concentration-dependently inhibited

washed rabbit platelet aggregation induced by collagen and arachidonic acid, with IC₅₀ of 20.5 \pm 3.5 and 69.2 \pm

5.1 µM, respectively, while has little effect on thromboxane A₂ mimic, U46619- or thrombin-mediated platelet

aggregation, suggesting that hesperetin may selectively inhibited collagen-mediated signal transduction. In

accordance with these findings, hesperetin revealed blocking of the collagen-mediated phospholipase C gamma2

phosphorylation, and caused a concentration-dependent decrease of arachidonic acid liberation, cytosolic

calcium mobilization and serotonin release. It was also supported by the ex vivo platelet aggregation study that

administration of hesperetin (100 mg/kg) potently inhibited collagen-induced platelet aggregation in rats.

Furthermore, hesperetin inhibited arachidonic acid-mediated platelet aggregation by interfering with

cyclooxygenase activity as established by measuring the productions of thromboxane A2 and prostaglandin D2

when arachidonic acid was added. Taken together, the present results provide a molecular basis for the

antiplatelet activity of hesperetin, through inhibition of phospholipase C gamma2 phosphorylation and

cyclooxygenase activity.

[OB3-1] [2004-10-22 13:45 - 14:00 / Room 205]

Transcriptional regulation of glial cell-specific JC virus early promoter by phorbol

ester and Interlukin-1B

Kim So young^o, Choi Eung chil, Kim Hee sun

College of pharmacy, Seoul national university and Department of Neuroscience, Ewha Womans University

School of Medicine, College of pharmacy, Seoul national university, Department of Neuroscience, Ewha Womans

University School of Medicine

147